Пример #1
0
    def _clean(self, ar):
        nchan = ar.get_nchan()
        nsub = ar.get_nsubint()
        weights = (ar.get_weights() > 0)

        nchan_masked = np.sum(weights.sum(axis=0) == 0)
        nsub_masked = np.sum(weights.sum(axis=1) == 0)

        sub_badfrac = 1 - weights.sum(axis=1) / float(nchan - nchan_masked)
        chan_badfrac = 1 - weights.sum(axis=0) / float(nsub - nsub_masked)

        sub_is_bad = np.argwhere(sub_badfrac > self.configs.badchantol)
        utils.print_debug(
            'Number of subints to mask because too many '
            'channels are already masked: %d (%.1f %%)' %
            (sub_is_bad.size, 100.0 * sub_is_bad.size / nsub), 'clean')
        for isub in sub_is_bad:
            clean_utils.zero_weight_subint(ar, isub)

        chan_is_bad = np.argwhere(chan_badfrac > self.configs.badsubtol)
        utils.print_debug(
            'Number of channels to mask because too many '
            'subints are already masked: %d (%.1f %%)' %
            (chan_is_bad.size, 100.0 * chan_is_bad.size / nchan), 'clean')
        for ichan in chan_is_bad:
            clean_utils.zero_weight_chan(ar, ichan)
Пример #2
0
    def _clean(self, ar):
        nchan = ar.get_nchan()
        nsub = ar.get_nsubint()
        weights = (ar.get_weights() > 0)

        nchan_masked = np.sum(weights.sum(axis=0) == 0)
        nsub_masked = np.sum(weights.sum(axis=1) == 0)

        sub_badfrac = 1 - weights.sum(axis=1) / float(nchan - nchan_masked)
        chan_badfrac = 1 - weights.sum(axis=0) / float(nsub - nsub_masked)

        sub_is_bad = np.argwhere(sub_badfrac > self.configs.badchantol)
        for isub in sub_is_bad:
            clean_utils.zero_weight_subint(ar, isub)

        chan_is_bad = np.argwhere(chan_badfrac > self.configs.badsubtol)
        for ichan in chan_is_bad:
            clean_utils.zero_weight_chan(ar, ichan)
Пример #3
0
    def __remove_bad_subints(self, ar):
        """Zero-weights bad subints.
           The file is modified in-place. However, zero-weighting
           is used for trimming, so the process is reversible.

           Inputs:
               ar: The psrchive archive object to clean.

           Outputs:
               None
        """
        if self.configs.badsubints:
            for tozap in self.configs.badsubints:
                if type(tozap) is int:
                    clean_utils.zero_weight_subint(ar, tozap)
                else:
                    losubint, hisubint = tozap
                    for xx in range(losubint, hisubint + 1):
                        clean_utils.zero_weight_subint(ar, xx)
Пример #4
0
def deep_clean(toclean, chanthresh=None, subintthresh=None, binthresh=None):
    import psrchive  # Temporarily, because python bindings
    # are not available on all computers

    if chanthresh is None:
        chanthresh = config.cfg.clean_chanthresh
    if subintthresh is None:
        subintthresh = config.cfg.clean_subintthresh
    if binthresh is None:
        binthresh = config.cfg.clean_binthresh

    ar = toclean.clone()

    ar.pscrunch()
    ar.remove_baseline()
    ar.dedisperse()

    # Remove profile
    data = ar.get_data().squeeze()
    template = np.apply_over_axes(np.sum, data, (0, 1)).squeeze()
    clean_utils.remove_profile_inplace(ar, template, None)

    ar.dededisperse()

    # First clean channels
    chandata = clean_utils.get_chans(ar, remove_prof=True)
    chanweights = clean_utils.get_chan_weights(ar).astype(bool)
    chanmeans = clean_utils.scale_chans(chandata.mean(axis=1),
                                        chanweights=chanweights)
    chanmeans /= clean_utils.get_robust_std(chanmeans, chanweights)
    chanstds = clean_utils.scale_chans(chandata.std(axis=1),
                                       chanweights=chanweights)
    chanstds /= clean_utils.get_robust_std(chanstds, chanweights)

    badchans = np.concatenate((np.argwhere(np.abs(chanmeans) >= chanthresh), \
                                    np.argwhere(np.abs(chanstds) >= chanthresh)))
    badchans = np.unique(badchans)
    utils.print_info(
        "Number of channels to be de-weighted: %d" % len(badchans), 2)
    for ichan in badchans:
        utils.print_info("De-weighting chan# %d" % ichan, 3)
        clean_utils.zero_weight_chan(ar, ichan)
        clean_utils.zero_weight_chan(toclean, ichan)

    # Next clean subints
    subintdata = clean_utils.get_subints(ar, remove_prof=True)
    subintweights = clean_utils.get_subint_weights(ar).astype(bool)
    subintmeans = clean_utils.scale_subints(subintdata.mean(axis=1), \
                                    subintweights=subintweights)
    subintmeans /= clean_utils.get_robust_std(subintmeans, subintweights)
    subintstds = clean_utils.scale_subints(subintdata.std(axis=1), \
                                    subintweights=subintweights)
    subintstds /= clean_utils.get_robust_std(subintstds, subintweights)

    badsubints = np.concatenate((np.argwhere(np.abs(subintmeans) >= subintthresh), \
                                    np.argwhere(np.abs(subintstds) >= subintthresh)))

    if config.debug.CLEAN:
        plt.subplots_adjust(hspace=0.4)
        chanax = plt.subplot(4, 1, 1)
        plt.plot(np.arange(len(chanmeans)), chanmeans, 'k-')
        plt.axhline(chanthresh, c='k', ls='--')
        plt.axhline(-chanthresh, c='k', ls='--')
        plt.xlabel('Channel Number', size='x-small')
        plt.ylabel('Average', size='x-small')

        plt.subplot(4, 1, 2, sharex=chanax)
        plt.plot(np.arange(len(chanstds)), chanstds, 'k-')
        plt.axhline(chanthresh, c='k', ls='--')
        plt.axhline(-chanthresh, c='k', ls='--')
        plt.xlabel('Channel Number', size='x-small')
        plt.ylabel('Standard Deviation', size='x-small')

        subintax = plt.subplot(4, 1, 3)
        plt.plot(np.arange(len(subintmeans)), subintmeans, 'k-')
        plt.axhline(subintthresh, c='k', ls='--')
        plt.axhline(-subintthresh, c='k', ls='--')
        plt.xlabel('Sub-int Number', size='x-small')
        plt.ylabel('Average', size='x-small')

        plt.subplot(4, 1, 4, sharex=subintax)
        plt.plot(np.arange(len(subintstds)), subintstds, 'k-')
        plt.axhline(subintthresh, c='k', ls='--')
        plt.axhline(-subintthresh, c='k', ls='--')
        plt.xlabel('Sub-int Number', size='x-small')
        plt.ylabel('Standard Deviation', size='x-small')
        plt.show()

    badsubints = np.unique(badsubints)
    utils.print_info(
        "Number of sub-ints to be de-weighted: %d" % len(badsubints), 2)
    for isub in badsubints:
        utils.print_info("De-weighting subint# %d" % isub, 3)
        clean_utils.zero_weight_subint(ar, isub)
        clean_utils.zero_weight_subint(toclean, isub)

    # Re-dedisperse the data
    ar.dedisperse()

    # Now replace hot bins
    utils.print_info("Will find and clean 'hot' bins", 2)
    clean_utils.clean_hot_bins(toclean, thresh=binthresh)