def main(path, draw=True): with gzip.open("resources/bc3200.pickle.gz") as fin: print 'Load Brown clusters for creating features ...' bcvocab = load(fin) evalparser(path=path, report=False, draw=draw, bcvocab=bcvocab, withdp=False)
def main(path, draw=True): with gzip.open("resources/bc3200.pickle.gz") as fin: print('Load Brown clusters for creating features ...') bcvocab = load(fin) evalparser(path=path, report=False, draw=draw, bcvocab=bcvocab, withdp=False)
print "len(vocab) = {}".format(len(vocab)) data = Data() trnM, trnL = data.loadmatrix(fdata, flabel) print "trnM.shape = {}".format(trnM.shape) idxlabelmap = reversedict(labelidxmap) pm = ParsingModel(vocab=vocab, idxlabelmap=idxlabelmap) pm.train(trnM, trnL) pm.savemodel("model/parsing-model.pickle.gz") if __name__ == "__main__": bcvocab = None ## Use brown clsuters with gzip.open("resources/bc3200.pickle.gz") as fin: print "Load Brown clusters for creating features ..." bcvocab = load(fin) ## Create training data # createtrndata(path="data/training/", topn=8000, bcvocab=bcvocab) ## Train model # trainmodel() ## Evaluate model on the RST-DT test set evalparser( path="data/test/", report=True, bcvocab=bcvocab, draw=False, withdp=WITHDP, fdpvocab="data/resources/word-dict.pickle.gz", fprojmat="data/resources/projmat.pickle.gz", )
D = load(gzip.open(fvocab)) vocab, labelidxmap = D['vocab'], D['labelidxmap'] print 'len(vocab) = {}'.format(len(vocab)) data = Data() trnM, trnL = data.loadmatrix(fdata, flabel) print 'trnM.shape = {}'.format(trnM.shape) idxlabelmap = reversedict(labelidxmap) pm = ParsingModel(vocab=vocab, idxlabelmap=idxlabelmap) pm.train(trnM, trnL) pm.savemodel("model/parsing-model.pickle.gz") if __name__ == '__main__': bcvocab = None ## Use brown clsuters with gzip.open("resources/bc3200.pickle.gz") as fin: print 'Load Brown clusters for creating features ...' bcvocab = load(fin) ## Create training data # createtrndata(path="data/training/", topn=8000, bcvocab=bcvocab) ## Train model # trainmodel() ## Evaluate model on the RST-DT test set evalparser(path="data/test/", report=True, bcvocab=bcvocab, draw=False, withdp=WITHDP, fdpvocab="data/resources/word-dict.pickle.gz", fprojmat="data/resources/projmat.pickle.gz")