Пример #1
0
 def updateOptimOp():
     if self._full_stats_init:
         return tf.cond(
             tf.greater(self.factor_step,
                        tf.convert_to_tensor(0)),
             lambda: optim.apply_gradients(
                 list(zip(u, varlist))), tf.no_op)
     else:
         return optim.apply_gradients(
             list(zip(u, varlist)))
def detectMinVal(input_mat, var, threshold=1e-6, name='', debug=False):
    eigen_min = tf.reduce_min(input_mat)
    eigen_max = tf.reduce_max(input_mat)
    eigen_ratio = eigen_max / eigen_min
    input_mat_clipped = clipoutNeg(input_mat, threshold)

    if debug:
        input_mat_clipped = tf.cond(tf.logical_or(tf.greater(eigen_ratio, 0.), tf.less(eigen_ratio, -500)), lambda: input_mat_clipped, lambda: tf.Print(
            input_mat_clipped, [tf.convert_to_tensor('screwed ratio ' + name + ' eigen values!!!'), tf.convert_to_tensor(var.name), eigen_min, eigen_max, eigen_ratio]))

    return input_mat_clipped
Пример #3
0
    def apply_stats(self, statsUpdates):
        """ compute stats and update/apply the new stats to the running average
        """
        def updateAccumStats():
            if self._full_stats_init:
                return tf.cond(
                    tf.greater(self.sgd_step, self._cold_iter),
                    lambda: tf.group(*self._apply_stats(
                        statsUpdates,
                        accumulate=True,
                        accumulateCoeff=1. / self._stats_accum_iter)),
                    tf.no_op)
            else:
                return tf.group(*self._apply_stats(statsUpdates,
                                                   accumulate=True,
                                                   accumulateCoeff=1. /
                                                   self._stats_accum_iter))

        def updateRunningAvgStats(statsUpdates, fac_iter=1):
            # return tf.cond(tf.greater_equal(self.factor_step,
            # tf.convert_to_tensor(fac_iter)), lambda:
            # tf.group(*self._apply_stats(stats_list, varlist)), tf.no_op)
            return tf.group(*self._apply_stats(statsUpdates))

        if self._async_stats:
            # asynchronous stats update
            update_stats = self._apply_stats(statsUpdates)

            queue = tf.FIFOQueue(
                1, [item.dtype for item in update_stats],
                shapes=[item.get_shape() for item in update_stats])
            enqueue_op = queue.enqueue(update_stats)

            def dequeue_stats_op():
                return queue.dequeue()

            self.qr_stats = tf.train.QueueRunner(queue, [enqueue_op])
            update_stats_op = tf.cond(
                tf.equal(queue.size(), tf.convert_to_tensor(0)), tf.no_op,
                lambda: tf.group(*[
                    dequeue_stats_op(),
                ]))
        else:
            # synchronous stats update
            update_stats_op = tf.cond(
                tf.greater_equal(self.stats_step, self._stats_accum_iter),
                lambda: updateRunningAvgStats(statsUpdates), updateAccumStats)
        self._update_stats_op = update_stats_op
        return update_stats_op
Пример #4
0
    def applyStatsEigen(self, eigen_list):
        updateOps = []
        print(('updating %d eigenvalue/vectors' % len(eigen_list)))
        for i, (tensor,
                mark) in enumerate(zip(eigen_list, self.eigen_update_list)):
            stats_eigen_var = self.eigen_reverse_lookup[mark]
            updateOps.append(
                tf.assign(stats_eigen_var, tensor, use_locking=True))

        with tf.control_dependencies(updateOps):
            factor_step_op = tf.assign_add(self.factor_step, 1)
            updateOps.append(factor_step_op)
            if KFAC_DEBUG:
                updateOps.append(
                    tf.Print(tf.constant(0.),
                             [tf.convert_to_tensor('updated kfac factors')]))
        return updateOps
Пример #5
0
        def coldSGDstart():
            sgd_grads, sgd_var = zip(*grads)

            if self.max_grad_norm != None:
                sgd_grads, sgd_grad_norm = tf.clip_by_global_norm(
                    sgd_grads, self.max_grad_norm)

            sgd_grads = list(zip(sgd_grads, sgd_var))

            sgd_step_op = tf.assign_add(self.sgd_step, 1)
            coldOptim_op = coldOptim.apply_gradients(sgd_grads)
            if KFAC_DEBUG:
                with tf.control_dependencies([sgd_step_op, coldOptim_op]):
                    sgd_step_op = tf.Print(sgd_step_op, [
                        self.sgd_step,
                        tf.convert_to_tensor('doing cold sgd step')
                    ])
            return tf.group(*[sgd_step_op, coldOptim_op])
Пример #6
0
    def _apply_stats(self, statsUpdates, accumulate=False, accumulateCoeff=0.):
        updateOps = []
        # obtain the stats var list
        for stats_var in statsUpdates:
            stats_new = statsUpdates[stats_var]
            if accumulate:
                # simple superbatch averaging
                update_op = tf.assign_add(stats_var,
                                          accumulateCoeff * stats_new,
                                          use_locking=True)
            else:
                # exponential running averaging
                update_op = tf.assign(stats_var,
                                      stats_var * self._stats_decay,
                                      use_locking=True)
                update_op = tf.assign_add(update_op,
                                          (1. - self._stats_decay) * stats_new,
                                          use_locking=True)
            updateOps.append(update_op)

        with tf.control_dependencies(updateOps):
            stats_step_op = tf.assign_add(self.stats_step, 1)

        if KFAC_DEBUG:
            stats_step_op = (tf.Print(stats_step_op, [
                tf.convert_to_tensor('step:'), self.global_step,
                tf.convert_to_tensor('fac step:'), self.factor_step,
                tf.convert_to_tensor('sgd step:'), self.sgd_step,
                tf.convert_to_tensor('Accum:'),
                tf.convert_to_tensor(accumulate),
                tf.convert_to_tensor('Accum coeff:'),
                tf.convert_to_tensor(accumulateCoeff),
                tf.convert_to_tensor('stat step:'), self.stats_step,
                updateOps[0], updateOps[1]
            ]))
        return [
            stats_step_op,
        ]
Пример #7
0
    def apply_gradients_kfac(self, grads):
        g, varlist = list(zip(*grads))

        if len(self.stats_eigen) == 0:
            self.getStatsEigen()

        qr = None
        # launch eigen-decomp on a queue thread
        if self._async:
            print('Use async eigen decomp')
            # get a list of factor loading tensors
            factorOps_dummy = self.computeStatsEigen()

            # define a queue for the list of factor loading tensors
            queue = tf.FIFOQueue(
                1, [item.dtype for item in factorOps_dummy],
                shapes=[item.get_shape() for item in factorOps_dummy])
            enqueue_op = tf.cond(
                tf.logical_and(
                    tf.equal(tf.mod(self.stats_step, self._kfac_update),
                             tf.convert_to_tensor(0)),
                    tf.greater_equal(self.stats_step, self._stats_accum_iter)),
                lambda: queue.enqueue(self.computeStatsEigen()), tf.no_op)

            def dequeue_op():
                return queue.dequeue()

            qr = tf.train.QueueRunner(queue, [enqueue_op])

        updateOps = []
        global_step_op = tf.assign_add(self.global_step, 1)
        updateOps.append(global_step_op)

        with tf.control_dependencies([global_step_op]):

            # compute updates
            assert self._update_stats_op != None
            updateOps.append(self._update_stats_op)
            dependency_list = []
            if not self._async:
                dependency_list.append(self._update_stats_op)

            with tf.control_dependencies(dependency_list):

                def no_op_wrapper():
                    return tf.group(*[tf.assign_add(self.cold_step, 1)])

                if not self._async:
                    # synchronous eigen-decomp updates
                    updateFactorOps = tf.cond(
                        tf.logical_and(
                            tf.equal(
                                tf.mod(self.stats_step, self._kfac_update),
                                tf.convert_to_tensor(0)),
                            tf.greater_equal(self.stats_step,
                                             self._stats_accum_iter)),
                        lambda: tf.group(*self.applyStatsEigen(
                            self.computeStatsEigen())), no_op_wrapper)
                else:
                    # asynchronous eigen-decomp updates using queue
                    updateFactorOps = tf.cond(
                        tf.greater_equal(self.stats_step,
                                         self._stats_accum_iter),
                        lambda: tf.cond(
                            tf.equal(queue.size(), tf.convert_to_tensor(0)),
                            tf.no_op,
                            lambda: tf.group(*self.applyStatsEigen(dequeue_op(
                            ))),
                        ), no_op_wrapper)

                updateOps.append(updateFactorOps)

                with tf.control_dependencies([updateFactorOps]):

                    def gradOp():
                        return list(g)

                    def getKfacGradOp():
                        return self.getKfacPrecondUpdates(g, varlist)

                    u = tf.cond(
                        tf.greater(self.factor_step, tf.convert_to_tensor(0)),
                        getKfacGradOp, gradOp)

                    optim = tf.train.MomentumOptimizer(
                        self._lr * (1. - self._momentum), self._momentum)

                    #optim = tf.train.AdamOptimizer(self._lr, epsilon=0.01)

                    def optimOp():
                        def updateOptimOp():
                            if self._full_stats_init:
                                return tf.cond(
                                    tf.greater(self.factor_step,
                                               tf.convert_to_tensor(0)),
                                    lambda: optim.apply_gradients(
                                        list(zip(u, varlist))), tf.no_op)
                            else:
                                return optim.apply_gradients(
                                    list(zip(u, varlist)))

                        if self._full_stats_init:
                            return tf.cond(
                                tf.greater_equal(self.stats_step,
                                                 self._stats_accum_iter),
                                updateOptimOp, tf.no_op)
                        else:
                            return tf.cond(
                                tf.greater_equal(self.sgd_step,
                                                 self._cold_iter),
                                updateOptimOp, tf.no_op)

                    updateOps.append(optimOp())

        return tf.group(*updateOps), qr
Пример #8
0
    def getKfacPrecondUpdates(self, gradlist, varlist):
        updatelist = []
        vg = 0.

        assert len(self.stats) > 0
        assert len(self.stats_eigen) > 0
        assert len(self.factors) > 0
        counter = 0

        grad_dict = {var: grad for grad, var in zip(gradlist, varlist)}

        for grad, var in zip(gradlist, varlist):
            GRAD_RESHAPE = False
            GRAD_TRANSPOSE = False

            fpropFactoredFishers = self.stats[var]['fprop_concat_stats']
            bpropFactoredFishers = self.stats[var]['bprop_concat_stats']

            if (len(fpropFactoredFishers) + len(bpropFactoredFishers)) > 0:
                counter += 1
                GRAD_SHAPE = grad.get_shape()
                if len(grad.get_shape()) > 2:
                    # reshape conv kernel parameters
                    KW = int(grad.get_shape()[0])
                    KH = int(grad.get_shape()[1])
                    C = int(grad.get_shape()[2])
                    D = int(grad.get_shape()[3])

                    if len(fpropFactoredFishers) > 1 and self._channel_fac:
                        # reshape conv kernel parameters into tensor
                        grad = tf.reshape(grad, [KW * KH, C, D])
                    else:
                        # reshape conv kernel parameters into 2D grad
                        grad = tf.reshape(grad, [-1, D])
                    GRAD_RESHAPE = True
                elif len(grad.get_shape()) == 1:
                    # reshape bias or 1D parameters
                    D = int(grad.get_shape()[0])

                    grad = tf.expand_dims(grad, 0)
                    GRAD_RESHAPE = True
                else:
                    # 2D parameters
                    C = int(grad.get_shape()[0])
                    D = int(grad.get_shape()[1])

                if (self.stats[var]['assnBias']
                        is not None) and not self._blockdiag_bias:
                    # use homogeneous coordinates only works for 2D grad.
                    # TO-DO: figure out how to factorize bias grad
                    # stack bias grad
                    var_assnBias = self.stats[var]['assnBias']
                    grad = tf.concat(
                        [grad,
                         tf.expand_dims(grad_dict[var_assnBias], 0)], 0)

                # project gradient to eigen space and reshape the eigenvalues
                # for broadcasting
                eigVals = []

                for idx, stats in enumerate(
                        self.stats[var]['fprop_concat_stats']):
                    Q = self.stats_eigen[stats]['Q']
                    e = detectMinVal(self.stats_eigen[stats]['e'],
                                     var,
                                     name='act',
                                     debug=KFAC_DEBUG)

                    Q, e = factorReshape(Q, e, grad, facIndx=idx, ftype='act')
                    eigVals.append(e)
                    grad = gmatmul(Q, grad, transpose_a=True, reduce_dim=idx)

                for idx, stats in enumerate(
                        self.stats[var]['bprop_concat_stats']):
                    Q = self.stats_eigen[stats]['Q']
                    e = detectMinVal(self.stats_eigen[stats]['e'],
                                     var,
                                     name='grad',
                                     debug=KFAC_DEBUG)

                    Q, e = factorReshape(Q, e, grad, facIndx=idx, ftype='grad')
                    eigVals.append(e)
                    grad = gmatmul(grad, Q, transpose_b=False, reduce_dim=idx)
                ##

                #####
                # whiten using eigenvalues
                weightDecayCoeff = 0.
                if var in self._weight_decay_dict:
                    weightDecayCoeff = self._weight_decay_dict[var]
                    if KFAC_DEBUG:
                        print(('weight decay coeff for %s is %f' %
                               (var.name, weightDecayCoeff)))

                if self._factored_damping:
                    if KFAC_DEBUG:
                        print(('use factored damping for %s' % (var.name)))
                    coeffs = 1.
                    num_factors = len(eigVals)
                    # compute the ratio of two trace norm of the left and right
                    # KFac matrices, and their generalization
                    if len(eigVals) == 1:
                        damping = self._epsilon + weightDecayCoeff
                    else:
                        damping = tf.pow(self._epsilon + weightDecayCoeff,
                                         1. / num_factors)
                    eigVals_tnorm_avg = [
                        tf.reduce_mean(tf.abs(e)) for e in eigVals
                    ]
                    for e, e_tnorm in zip(eigVals, eigVals_tnorm_avg):
                        eig_tnorm_negList = [
                            item for item in eigVals_tnorm_avg
                            if item != e_tnorm
                        ]
                        if len(eigVals) == 1:
                            adjustment = 1.
                        elif len(eigVals) == 2:
                            adjustment = tf.sqrt(e_tnorm /
                                                 eig_tnorm_negList[0])
                        else:
                            eig_tnorm_negList_prod = reduce(
                                lambda x, y: x * y, eig_tnorm_negList)
                            adjustment = tf.pow(
                                tf.pow(e_tnorm, num_factors - 1.) /
                                eig_tnorm_negList_prod, 1. / num_factors)
                        coeffs *= (e + adjustment * damping)
                else:
                    coeffs = 1.
                    damping = (self._epsilon + weightDecayCoeff)
                    for e in eigVals:
                        coeffs *= e
                    coeffs += damping

                #grad = tf.Print(grad, [tf.convert_to_tensor('1'), tf.convert_to_tensor(var.name), grad.get_shape()])

                grad /= coeffs

                #grad = tf.Print(grad, [tf.convert_to_tensor('2'), tf.convert_to_tensor(var.name), grad.get_shape()])
                #####
                # project gradient back to euclidean space
                for idx, stats in enumerate(
                        self.stats[var]['fprop_concat_stats']):
                    Q = self.stats_eigen[stats]['Q']
                    grad = gmatmul(Q, grad, transpose_a=False, reduce_dim=idx)

                for idx, stats in enumerate(
                        self.stats[var]['bprop_concat_stats']):
                    Q = self.stats_eigen[stats]['Q']
                    grad = gmatmul(grad, Q, transpose_b=True, reduce_dim=idx)
                ##

                #grad = tf.Print(grad, [tf.convert_to_tensor('3'), tf.convert_to_tensor(var.name), grad.get_shape()])
                if (self.stats[var]['assnBias']
                        is not None) and not self._blockdiag_bias:
                    # use homogeneous coordinates only works for 2D grad.
                    # TO-DO: figure out how to factorize bias grad
                    # un-stack bias grad
                    var_assnBias = self.stats[var]['assnBias']
                    C_plus_one = int(grad.get_shape()[0])
                    grad_assnBias = tf.reshape(
                        tf.slice(grad, begin=[C_plus_one - 1, 0], size=[1,
                                                                        -1]),
                        var_assnBias.get_shape())
                    grad_assnWeights = tf.slice(grad,
                                                begin=[0, 0],
                                                size=[C_plus_one - 1, -1])
                    grad_dict[var_assnBias] = grad_assnBias
                    grad = grad_assnWeights

                #grad = tf.Print(grad, [tf.convert_to_tensor('4'), tf.convert_to_tensor(var.name), grad.get_shape()])
                if GRAD_RESHAPE:
                    grad = tf.reshape(grad, GRAD_SHAPE)

                grad_dict[var] = grad

        print(('projecting %d gradient matrices' % counter))

        for g, var in zip(gradlist, varlist):
            grad = grad_dict[var]
            ### clipping ###
            if KFAC_DEBUG:
                print(('apply clipping to %s' % (var.name)))
            tf.Print(grad, [tf.sqrt(tf.reduce_sum(tf.pow(grad, 2)))],
                     "Euclidean norm of new grad")
            local_vg = tf.reduce_sum(grad * g * (self._lr * self._lr))
            vg += local_vg

        # recale everything
        if KFAC_DEBUG:
            print('apply vFv clipping')

        scaling = tf.minimum(1., tf.sqrt(self._clip_kl / vg))
        if KFAC_DEBUG:
            scaling = tf.Print(scaling, [
                tf.convert_to_tensor('clip: '), scaling,
                tf.convert_to_tensor(' vFv: '), vg
            ])
        with tf.control_dependencies([tf.assign(self.vFv, vg)]):
            updatelist = [grad_dict[var] for var in varlist]
            for i, item in enumerate(updatelist):
                updatelist[i] = scaling * item

        return updatelist
Пример #9
0
    def computeStatsEigen(self):
        """ compute the eigen decomp using copied var stats to avoid concurrent read/write from other queue """
        # TO-DO: figure out why this op has delays (possibly moving
        # eigenvectors around?)
        with tf.device('/cpu:0'):

            def removeNone(tensor_list):
                local_list = []
                for item in tensor_list:
                    if item is not None:
                        local_list.append(item)
                return local_list

            def copyStats(var_list):
                print("copying stats to buffer tensors before eigen decomp")
                redundant_stats = {}
                copied_list = []
                for item in var_list:
                    if item is not None:
                        if item not in redundant_stats:
                            if self._use_float64:
                                redundant_stats[item] = tf.cast(
                                    tf.identity(item), tf.float64)
                            else:
                                redundant_stats[item] = tf.identity(item)
                        copied_list.append(redundant_stats[item])
                    else:
                        copied_list.append(None)
                return copied_list

            #stats = [copyStats(self.fStats), copyStats(self.bStats)]
            #stats = [self.fStats, self.bStats]

            stats_eigen = self.stats_eigen
            computedEigen = {}
            eigen_reverse_lookup = {}
            updateOps = []
            # sync copied stats
            # with tf.control_dependencies(removeNone(stats[0]) +
            # removeNone(stats[1])):
            with tf.control_dependencies([]):
                for stats_var in stats_eigen:
                    if stats_var not in computedEigen:
                        eigens = tf.self_adjoint_eig(stats_var)
                        e = eigens[0]
                        Q = eigens[1]
                        if self._use_float64:
                            e = tf.cast(e, tf.float32)
                            Q = tf.cast(Q, tf.float32)
                        updateOps.append(e)
                        updateOps.append(Q)
                        computedEigen[stats_var] = {'e': e, 'Q': Q}
                        eigen_reverse_lookup[e] = stats_eigen[stats_var]['e']
                        eigen_reverse_lookup[Q] = stats_eigen[stats_var]['Q']

            self.eigen_reverse_lookup = eigen_reverse_lookup
            self.eigen_update_list = updateOps

            if KFAC_DEBUG:
                self.eigen_update_list = [item for item in updateOps]
                with tf.control_dependencies(updateOps):
                    updateOps.append(
                        tf.Print(
                            tf.constant(0.),
                            [tf.convert_to_tensor('computed factor eigen')]))

        return updateOps
Пример #10
0
    def compute_stats(self, loss_sampled, var_list=None):
        varlist = var_list
        if varlist is None:
            varlist = tf.trainable_variables()

        gs = tf.gradients(loss_sampled, varlist, name='gradientsSampled')
        self.gs = gs
        factors = self.getFactors(gs, varlist)
        stats = self.getStats(factors, varlist)

        updateOps = []
        statsUpdates = {}
        statsUpdates_cache = {}
        for var in varlist:
            opType = factors[var]['opName']
            fops = factors[var]['op']
            fpropFactor = factors[var]['fpropFactors_concat']
            fpropStats_vars = stats[var]['fprop_concat_stats']
            bpropFactor = factors[var]['bpropFactors_concat']
            bpropStats_vars = stats[var]['bprop_concat_stats']
            SVD_factors = {}
            for stats_var in fpropStats_vars:
                stats_var_dim = int(stats_var.get_shape()[0])
                if stats_var not in statsUpdates_cache:
                    old_fpropFactor = fpropFactor
                    B = (tf.shape(fpropFactor)[0])  # batch size
                    if opType == 'Conv2D':
                        strides = fops.get_attr("strides")
                        padding = fops.get_attr("padding")
                        convkernel_size = var.get_shape()[0:3]

                        KH = int(convkernel_size[0])
                        KW = int(convkernel_size[1])
                        C = int(convkernel_size[2])
                        flatten_size = int(KH * KW * C)

                        Oh = int(bpropFactor.get_shape()[1])
                        Ow = int(bpropFactor.get_shape()[2])

                        if Oh == 1 and Ow == 1 and self._channel_fac:
                            # factorization along the channels
                            # assume independence among input channels
                            # factor = B x 1 x 1 x (KH xKW x C)
                            # patches = B x Oh x Ow x (KH xKW x C)
                            if len(SVD_factors) == 0:
                                if KFAC_DEBUG:
                                    print((
                                        'approx %s act factor with rank-1 SVD factors'
                                        % (var.name)))
                                # find closest rank-1 approx to the feature map
                                S, U, V = tf.batch_svd(
                                    tf.reshape(fpropFactor, [-1, KH * KW, C]))
                                # get rank-1 approx slides
                                sqrtS1 = tf.expand_dims(tf.sqrt(S[:, 0, 0]), 1)
                                patches_k = U[:, :, 0] * sqrtS1  # B x KH*KW
                                full_factor_shape = fpropFactor.get_shape()
                                patches_k.set_shape(
                                    [full_factor_shape[0], KH * KW])
                                patches_c = V[:, :, 0] * sqrtS1  # B x C
                                patches_c.set_shape([full_factor_shape[0], C])
                                SVD_factors[C] = patches_c
                                SVD_factors[KH * KW] = patches_k
                            fpropFactor = SVD_factors[stats_var_dim]

                        else:
                            # poor mem usage implementation
                            patches = tf.extract_image_patches(
                                fpropFactor,
                                ksizes=[
                                    1, convkernel_size[0], convkernel_size[1],
                                    1
                                ],
                                strides=strides,
                                rates=[1, 1, 1, 1],
                                padding=padding)

                            if self._approxT2:
                                if KFAC_DEBUG:
                                    print(('approxT2 act fisher for %s' %
                                           (var.name)))
                                # T^2 terms * 1/T^2, size: B x C
                                fpropFactor = tf.reduce_mean(patches, [1, 2])
                            else:
                                # size: (B x Oh x Ow) x C
                                fpropFactor = tf.reshape(
                                    patches, [-1, flatten_size]) / Oh / Ow
                    fpropFactor_size = int(fpropFactor.get_shape()[-1])
                    if stats_var_dim == (fpropFactor_size +
                                         1) and not self._blockdiag_bias:
                        if opType == 'Conv2D' and not self._approxT2:
                            # correct padding for numerical stability (we
                            # divided out OhxOw from activations for T1 approx)
                            fpropFactor = tf.concat([
                                fpropFactor,
                                tf.ones([tf.shape(fpropFactor)[0], 1]) / Oh /
                                Ow
                            ], 1)
                        else:
                            # use homogeneous coordinates
                            fpropFactor = tf.concat([
                                fpropFactor,
                                tf.ones([tf.shape(fpropFactor)[0], 1])
                            ], 1)

                    # average over the number of data points in a batch
                    # divided by B
                    cov = tf.matmul(fpropFactor, fpropFactor,
                                    transpose_a=True) / tf.cast(B, tf.float32)
                    updateOps.append(cov)
                    statsUpdates[stats_var] = cov
                    if opType != 'Conv2D':
                        # HACK: for convolution we recompute fprop stats for
                        # every layer including forking layers
                        statsUpdates_cache[stats_var] = cov

            for stats_var in bpropStats_vars:
                stats_var_dim = int(stats_var.get_shape()[0])
                if stats_var not in statsUpdates_cache:
                    old_bpropFactor = bpropFactor
                    bpropFactor_shape = bpropFactor.get_shape()
                    B = tf.shape(bpropFactor)[0]  # batch size
                    C = int(bpropFactor_shape[-1])  # num channels
                    if opType == 'Conv2D' or len(bpropFactor_shape) == 4:
                        if fpropFactor is not None:
                            if self._approxT2:
                                if KFAC_DEBUG:
                                    print(('approxT2 grad fisher for %s' %
                                           (var.name)))
                                bpropFactor = tf.reduce_sum(
                                    bpropFactor, [1, 2])  # T^2 terms * 1/T^2
                            else:
                                bpropFactor = tf.reshape(
                                    bpropFactor,
                                    [-1, C]) * Oh * Ow  # T * 1/T terms
                        else:
                            # just doing block diag approx. spatial independent
                            # structure does not apply here. summing over
                            # spatial locations
                            if KFAC_DEBUG:
                                print(('block diag approx fisher for %s' %
                                       (var.name)))
                            bpropFactor = tf.reduce_sum(bpropFactor, [1, 2])

                    # assume sampled loss is averaged. TO-DO:figure out better
                    # way to handle this
                    bpropFactor *= tf.to_float(B)
                    ##

                    cov_b = tf.matmul(bpropFactor,
                                      bpropFactor,
                                      transpose_a=True) / tf.to_float(
                                          tf.shape(bpropFactor)[0])

                    updateOps.append(cov_b)
                    statsUpdates[stats_var] = cov_b
                    statsUpdates_cache[stats_var] = cov_b

        if KFAC_DEBUG:
            aKey = list(statsUpdates.keys())[0]
            statsUpdates[aKey] = tf.Print(statsUpdates[aKey], [
                tf.convert_to_tensor('step:'),
                self.global_step,
                tf.convert_to_tensor('computing stats'),
            ])
        self.statsUpdates = statsUpdates
        return statsUpdates
Пример #11
0
def multi_modal_network_fp(dim_input=27, dim_output=7, batch_size=25, network_config=None):
    """
    An example a network in tf that has both state and image inputs, with the feature
    point architecture (spatial softmax + expectation).
    Args:
        dim_input: Dimensionality of input.
        dim_output: Dimensionality of the output.
        batch_size: Batch size.
        network_config: dictionary of network structure parameters
    Returns:
        A tfMap object that stores inputs, outputs, and scalar loss.
    """
    n_layers = 3
    layer_size = 20
    dim_hidden = (n_layers - 1)*[layer_size]
    dim_hidden.append(dim_output)
    pool_size = 2
    filter_size = 5

    # List of indices for state (vector) data and image (tensor) data in observation.
    x_idx, img_idx, i = [], [], 0
    for sensor in network_config['obs_include']:
        dim = network_config['sensor_dims'][sensor]
        if sensor in network_config['obs_image_data']:
            img_idx = img_idx + list(range(i, i+dim))
        else:
            x_idx = x_idx + list(range(i, i+dim))
        i += dim

    nn_input, action, precision = get_input_layer(dim_input, dim_output)

    state_input = nn_input[:, 0:x_idx[-1]+1]
    image_input = nn_input[:, x_idx[-1]+1:img_idx[-1]+1]

    # image goes through 3 convnet layers
    num_filters = network_config['num_filters']

    im_height = network_config['image_height']
    im_width = network_config['image_width']
    num_channels = network_config['image_channels']
    image_input = tf.reshape(image_input, [-1, num_channels, im_width, im_height])
    image_input = tf.transpose(image_input, perm=[0,3,2,1])

    # we pool twice, each time reducing the image size by a factor of 2.
    conv_out_size = int(im_width/(2.0*pool_size)*im_height/(2.0*pool_size)*num_filters[1])
    first_dense_size = conv_out_size + len(x_idx)

    # Store layers weight & bias
    with tf.variable_scope('conv_params'):
        weights = {
            'wc1': init_weights([filter_size, filter_size, num_channels, num_filters[0]], name='wc1'), # 5x5 conv, 1 input, 32 outputs
            'wc2': init_weights([filter_size, filter_size, num_filters[0], num_filters[1]], name='wc2'), # 5x5 conv, 32 inputs, 64 outputs
            'wc3': init_weights([filter_size, filter_size, num_filters[1], num_filters[2]], name='wc3'), # 5x5 conv, 32 inputs, 64 outputs
        }

        biases = {
            'bc1': init_bias([num_filters[0]], name='bc1'),
            'bc2': init_bias([num_filters[1]], name='bc2'),
            'bc3': init_bias([num_filters[2]], name='bc3'),
        }

    conv_layer_0 = conv2d(img=image_input, w=weights['wc1'], b=biases['bc1'], strides=[1,2,2,1])
    conv_layer_1 = conv2d(img=conv_layer_0, w=weights['wc2'], b=biases['bc2'])
    conv_layer_2 = conv2d(img=conv_layer_1, w=weights['wc3'], b=biases['bc3'])

    _, num_rows, num_cols, num_fp = conv_layer_2.get_shape()
    num_rows, num_cols, num_fp = [int(x) for x in [num_rows, num_cols, num_fp]]
    x_map = np.empty([num_rows, num_cols], np.float32)
    y_map = np.empty([num_rows, num_cols], np.float32)

    for i in range(num_rows):
        for j in range(num_cols):
            x_map[i, j] = (i - num_rows / 2.0) / num_rows
            y_map[i, j] = (j - num_cols / 2.0) / num_cols

    x_map = tf.convert_to_tensor(x_map)
    y_map = tf.convert_to_tensor(y_map)

    x_map = tf.reshape(x_map, [num_rows * num_cols])
    y_map = tf.reshape(y_map, [num_rows * num_cols])

    # rearrange features to be [batch_size, num_fp, num_rows, num_cols]
    features = tf.reshape(tf.transpose(conv_layer_2, [0,3,1,2]),
                          [-1, num_rows*num_cols])
    softmax = tf.nn.softmax(features)

    fp_x = tf.reduce_sum(tf.mul(x_map, softmax), [1], keep_dims=True)
    fp_y = tf.reduce_sum(tf.mul(y_map, softmax), [1], keep_dims=True)

    fp = tf.reshape(tf.concat(1, [fp_x, fp_y]), [-1, num_fp*2])

    fc_input = tf.concat(concat_dim=1, values=[fp, state_input])

    fc_output, weights_FC, biases_FC = get_mlp_layers(fc_input, n_layers, dim_hidden)
    fc_vars = weights_FC + biases_FC

    loss = euclidean_loss_layer(a=action, b=fc_output, precision=precision, batch_size=batch_size)
    nnet = TfMap.init_from_lists([nn_input, action, precision], [fc_output], [loss], fp=fp)
    last_conv_vars = fc_input

    return nnet, fc_vars, last_conv_vars