Пример #1
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL_Z, KL_Y and Rec decomposition
        #
        # To assist you in the vectorization of the summation over y, we have
        # the computation of q(y | x) and some tensor tiling code for you.
        #
        # Note that nelbo = kl_z + kl_y + rec
        #
        # Outputs should all be scalar
        ################################################################################
        y_logits = self.cls.classify(x)
        y_logprob = F.log_softmax(y_logits, dim=1)
        y_prob = torch.softmax(y_logits, dim=1)  # (batch, y_dim)

        p_y = 1 / 10 * torch.ones_like(y_prob)
        kl_y = torch.mean(ut.kl_cat(y_prob, y_logprob, torch.log(p_y)), dim=0)

        batch_size = x.shape[0]
        # Duplicate y based on x's batch size. Then duplicate x
        # This enumerates all possible combination of x with labels (0, 1, ..., 9)
        y = np.repeat(np.arange(self.y_dim), x.size(0))
        y = x.new(np.eye(self.y_dim)[y])
        x = ut.duplicate(x, self.y_dim)

        qm, qv = self.enc.encode(x, y)
        z = ut.sample_gaussian(qm, qv)
        recon_logits = self.dec.decode(z, y)

        p_x_given_yz = ut.log_bernoulli_with_logits(x, recon_logits)
        p_x_given_yz = p_x_given_yz.reshape(self.y_dim, batch_size).transpose(
            0, 1)  #[batch, 10]

        rec = -torch.mean(torch.sum(p_x_given_yz * y_prob, dim=1), dim=0)

        kl_z_over_xy = ut.kl_normal(qm, qv, self.z_prior_m, self.z_prior_v)
        kl_z_over_xy = kl_z_over_xy.reshape(self.y_dim,
                                            batch_size).transpose(0, 1)

        kl_z = torch.mean(torch.sum(kl_z_over_xy * y_prob, dim=1), dim=0)

        nelbo = rec + kl_y + kl_z

        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl_z, kl_y, rec
Пример #2
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL_Z, KL_Y and Rec decomposition
        #
        # To assist you in the vectorization of the summation over y, we have
        # the computation of q(y | x) and some tensor tiling code for you.
        #
        # Note that nelbo = kl_z + kl_y + rec
        #
        # Outputs should all be scalar
        ################################################################################
        y_logits = self.cls.classify(x)
        y_logprob = F.log_softmax(y_logits, dim=1)
        y_prob = torch.softmax(y_logits, dim=1)

        # Duplicate y based on x's batch size. Then duplicate x
        # This enumerates all possible combination of x with labels (0, 1, ..., 9)
        y = np.repeat(np.arange(self.y_dim), x.size(0))
        y = x.new(np.eye(self.y_dim)[y])
        x = ut.duplicate(x, self.y_dim)

        # sample z from x and y
        qm, qv = self.enc.encode(x, y)
        z = ut.sample_gaussian(qm, qv)

        # compute kl
        x_logits = self.dec.decode(z, y)
        kl_y = ut.kl_cat(y_prob, y_logprob, np.log(1.0 / self.y_dim))
        kl_z = ut.kl_normal(qm, qv, self.z_prior[0], self.z_prior[1])
        rec_loss = -ut.log_bernoulli_with_logits(x, x_logits)

        # (y_dim * batch)
        # Compute the expected reconstruction and kl base on the distribution q(y|x), q(y,z|x)
        rec_loss_y = (y_prob.t() * rec_loss.reshape(self.y_dim, -1)).sum(0)
        kl_z_y = (y_prob.t() * kl_z.reshape(self.y_dim, -1)).sum(0)

        # Reduce to means
        kl_y, kl_z, rec = kl_y.mean(), kl_z_y.mean(), rec_loss_y.mean()
        nelbo = rec + kl_z + kl_y

        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl_z, kl_y, rec
Пример #3
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL_Z, KL_Y and Rec decomposition
        #
        # To assist you in the vectorization of the summation over y, we have
        # the computation of q(y | x) and some tensor tiling code for you.
        #
        # Note that nelbo = kl_z + kl_y + rec
        #
        # Outputs should all be scalar
        ################################################################################
        y_logits = self.cls.classify(x)
        y_logprob = F.log_softmax(y_logits, dim=1)
        y_prob = torch.softmax(y_logprob, dim=1)  # (batch, y_dim)
        # Duplicate y based on x's batch size. Then duplicate x
        # This enumerates all possible combination of x with labels (0, 1, ..., 9)
        y = np.repeat(np.arange(self.y_dim), x.size(0))
        y = x.new(np.eye(self.y_dim)[y])
        x = ut.duplicate(x, self.y_dim)
        #
        # Generate samples.
        qm, qv = self.enc.encode(x, y)
        z_sample = ut.sample_gaussian(qm, qv)
        xprime = self.dec.decode(z_sample, y)
        #
        # Compute loss.
        y_prior = torch.ones_like(y_logprob) / self.y_dim
        kl_y = ut.kl_cat(y_prob, y_logprob, y_prior)
        #
        # Data is duplicated in a way to make the batch dimension second.
        kl_z = ut.kl_normal(qm, qv, self.z_prior_m,
                            self.z_prior_v).view(self.y_dim, -1)
        rec = -ut.log_bernoulli_with_logits(x, xprime).view(self.y_dim, -1)
        #
        # Swap axis where the probabilitiees are to match the new batch dimensions.
        nelbo = kl_y + (y_prob.t() * (kl_z + rec)).sum(0)
        nelbo = nelbo.mean()
        # Test set classification accuracy: 0.8104000091552734
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl_z, kl_y, rec
Пример #4
0
    def negative_elbo_bound_gumbel(self, x, tau):
        """
        Gumbel-softmax version. Not slated for release.
        """
        y_logits = self.cls.classify(x)
        y_logprob = F.log_softmax(y_logits, dim=1)
        y_prob = F.softmax(y_logits, dim=1)
        y = ut.gumbel_softmax(y_logits, tau)

        m, v = self.enc.encode(x, y)
        z = ut.sample_gaussian(m, v)
        x_logits = self.dec.decode(z, y)

        kl_y = ut.kl_cat(y_prob, y_logprob, np.log(1.0 / self.y_dim)).mean()
        kl_z = ut.kl_normal(m, v, self.z_prior[0], self.z_prior[1]).mean()
        rec = -ut.log_bernoulli_with_logits(x, x_logits).mean()
        nelbo = kl_y + kl_z + rec
        return nelbo, kl_z, kl_y, rec
Пример #5
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL_Z, KL_Y and Rec decomposition
        #
        # To assist you in the vectorization of the summation over y, we have
        # the computation of q(y | x) and some tensor tiling code for you.
        #
        # Note that nelbo = kl_z + kl_y + rec
        #
        # Outputs should all be scalar
        ################################################################################
        N_batches, dims = x.size()

        y_logits = self.cls.classify(x)
        y_logprob = F.log_softmax(y_logits, dim=1)
        y_prob = torch.softmax(y_logprob, dim=1)  # (batch, y_dim)

        # Duplicate y based on x's batch size. Then duplicate x
        # This enumerates all possible combination of x with labels (0, 1, ..., 9)
        y = np.repeat(np.arange(self.y_dim), x.size(0))
        y = x.new(np.eye(self.y_dim)[y])
        x = ut.duplicate(x, self.y_dim)

        q_mu, q_var = self.enc.encode(x, y)

        z_samp = ut.sample_gaussian(q_mu, q_var)

        logits = self.dec.decode(z_samp, y)

        rec_ls = -ut.log_bernoulli_with_logits(x, logits)

        rec = torch.mean(
            torch.sum(y_prob * rec_ls.reshape(N_batches, -1), dim=1))

        kl_y = torch.mean(
            ut.kl_cat(y_prob, y_logprob,
                      torch.log(torch.ones_like(y_prob) / self.y_dim)))

        kl_z_ls = ut.kl_normal(q_mu, q_var, torch.zeros_like(q_mu),
                               torch.ones_like(q_var))

        kl_z = torch.mean(
            torch.sum(y_prob * kl_z_ls.reshape(N_batches, -1), dim=1))

        nelbo = kl_z + kl_y + rec
        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl_z, kl_y, rec
Пример #6
0
    def negative_elbo_bound(self, x):
        """
        Computes the Evidence Lower Bound, KL and, Reconstruction costs

        Args:
            x: tensor: (batch, dim): Observations

        Returns:
            nelbo: tensor: (): Negative evidence lower bound
            kl: tensor: (): ELBO KL divergence to prior
            rec: tensor: (): ELBO Reconstruction term
        """
        ################################################################################
        # TODO: Modify/complete the code here
        # Compute negative Evidence Lower Bound and its KL_Z, KL_Y and Rec decomposition
        #
        # To assist you in the vectorization of the summation over y, we have
        # the computation of q(y | x) and some tensor tiling code for you.
        #
        # Note that nelbo = kl_z + kl_y + rec
        #
        # Outputs should all be scalar
        ################################################################################
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        y_logits = self.cls.classify(x)
        y_logprob = F.log_softmax(y_logits, dim=1)
        y_prob = torch.softmax(y_logprob, dim=1) # (batch, y_dim)

        # Duplicate y based on x's batch size. Then duplicate x
        # This enumerates all possible combination of x with labels (0, 1, ..., 9)
        y = np.repeat(np.arange(self.y_dim), x.size(0))
        y = x.new(np.eye(self.y_dim)[y]) #1000,10. 0,100,200 dupe
        x = ut.duplicate(x, self.y_dim) #1000,784. 0,100,200 dupe

        #100x10
        y_prior = torch.tensor([0.1]).expand_as(y_prob).to(device)
        y_logprior = torch.log(y_prior)
        #(batch size,)
        kl_ys = ut.kl_cat(y_prob, y_logprob, y_logprior)
        kl_y = torch.mean(kl_ys)


        #1000 x 64. Still 0,100,200 corresponding...
        zqm, zqv = self.enc.encode(x, y)
        zpm = self.z_prior_m.expand_as(zqm)
        zpv = self.z_prior_v.expand_as(zqv)

        #so the zpm, zpv go as x quickly, y slowly
        #equivalent to y being the 0th dimension

        #(batch_size * y_dim,)
        kl_zs_flat = ut.kl_normal(zqm, zqv, zpm, zpv)
        kl_zs = kl_zs_flat.reshape(10,100).t()
        kl_zs_weighted = kl_zs * y_prob
        batch_kl_zs = kl_zs_weighted.sum(1)
        kl_z = batch_kl_zs.mean()

        #1000 x 64
        z = ut.sample_gaussian(zqm, zqv)

        #1000 x 784
        probs = self.dec.decode(z, y)
        #(batch_size * y_dim,)
        recs_flat = -1.0 * ut.log_bernoulli_with_logits(x, probs)
        recs = recs_flat.reshape(10,100).t()
        recs_weighted = recs * y_prob
        batch_recs = recs_weighted.sum(1)
        rec = batch_recs.mean()

        nelbos = kl_ys + batch_kl_zs + batch_recs
        nelbo = torch.mean(nelbos)


        ################################################################################
        # End of code modification
        ################################################################################
        return nelbo, kl_z, kl_y, rec