Пример #1
0
def auxiliary_information(builder):
    """This function generates any auxiliary information regarding special handling of
    expressions that do not have any integral forms or subkernels associated with it.

    :arg builder: a :class:`SlateKernelBuilder` object that contains all the necessary
                  temporary and expression information.

    Returns: a mapping of the form ``{aux_node: aux_temp}``, where `aux_node` is an
             already assembled data-object provided as a `ufl.Coefficient` and `aux_temp`
             is the corresponding temporary.

             a list of auxiliary statements are returned that contain temporary declarations
             and any code-blocks needed to evaluate the expression.
    """
    aux_temps = {}
    aux_statements = []
    for i, exp in enumerate(builder.aux_exprs):
        if isinstance(exp, Action):
            acting_coefficient = exp._acting_coefficient
            assert isinstance(acting_coefficient, Coefficient)

            temp = ast.Symbol("C%d" % i)
            V = acting_coefficient.function_space()
            node_extent = V.fiat_element.space_dimension()
            dof_extent = np.prod(V.ufl_element().value_shape())
            aux_statements.append(
                ast.Decl(
                    eigen_matrixbase_type(shape=(dof_extent * node_extent, )),
                    temp))
            aux_statements.append(ast.FlatBlock("%s.setZero();\n" % temp))

            # Now we unpack the coefficient and insert its entries into a 1D vector temporary
            isym = ast.Symbol("i1")
            jsym = ast.Symbol("j1")
            tensor_index = ast.Sum(ast.Prod(dof_extent, isym), jsym)
            # Inner-loop running over dof_extent
            inner_loop = ast.For(
                ast.Decl("unsigned int", jsym, init=0),
                ast.Less(jsym, dof_extent), ast.Incr(jsym, 1),
                ast.Assign(
                    ast.Symbol(temp, rank=(tensor_index, )),
                    ast.Symbol(builder.coefficient_map[acting_coefficient],
                               rank=(isym, jsym))))
            # Outer-loop running over node_extent
            loop = ast.For(ast.Decl("unsigned int", isym, init=0),
                           ast.Less(isym, node_extent), ast.Incr(isym, 1),
                           inner_loop)

            aux_statements.append(loop)
            aux_temps[acting_coefficient] = temp
        else:
            raise NotImplementedError(
                "Auxiliary expression type %s not currently implemented." %
                type(exp))

    return aux_temps, aux_statements
Пример #2
0
def get_restriction_kernel(fiat_element, unique_indices, dim=1, no_weights=False):
    weights = restriction_weights(fiat_element)[unique_indices].T
    ncdof = weights.shape[0]
    nfdof = weights.shape[1]
    arglist = [ast.Decl("double", ast.Symbol("coarse", (ncdof*dim, ))),
               ast.Decl("double *restrict *restrict ", ast.Symbol("fine", ()),
                        qualifiers=["const"])]
    if not no_weights:
        arglist.append(ast.Decl("double *restrict *restrict", ast.Symbol("count_weights", ()),
                                qualifiers=["const"]))

    all_ones = np.allclose(weights, 1.0)

    if all_ones:
        w = []
    else:
        w_sym = ast.Symbol("weights", (ncdof, nfdof))
        init = ast.ArrayInit(format_array_literal(weights))
        w = [ast.Decl("double", w_sym, init,
                      qualifiers=["const"])]

    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    fine = ast.Symbol("fine", (j, k))
    if no_weights:
        if all_ones:
            assign = fine
        else:
            assign = ast.Prod(fine, ast.Symbol("weights", (i, j)))
    else:
        if all_ones:
            assign = ast.Prod(fine, ast.Symbol("count_weights", (j, 0)))
        else:
            assign = ast.Prod(fine,
                              ast.Prod(ast.Symbol("weights", (i, j)),
                                       ast.Symbol("count_weights", (j, 0))))
    assignment = ast.Incr(ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))),)),
                          assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)),
                     ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(nfdof)),
                     ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(ncdof)),
                     ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void", "restriction", arglist, ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "restriction", opts=parameters["coffee"])
Пример #3
0
def ker_reduce_ind_read():
    body = ast.Incr('a', ast.Prod(ast.Symbol('V', (0, 'i')), ast.Symbol('B', (0,))))
    body = \
        [ast.Decl('int', 'a', '0')] +\
        ItSpace().to_for([(0, 2)], ('i',), [body]) +\
        [ast.Incr(ast.Symbol('A', (0,)), 'a')]
    return ast.FunDecl('void', 'ker_reduce_ind_read',
                       [ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=['']),
                        ast.Decl('int', 'V', qualifiers=['unsigned'], pointers=['', '']),
                        ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=[''])],
                       ast.Block(body))
Пример #4
0
def get_count_kernel(arity):
    arglist = [ast.Decl("double", ast.Symbol("weight", (arity, )))]
    i = ast.Symbol("i", ())
    assignment = ast.Incr(ast.Symbol("weight", (i, )), ast.c_sym(1.0))
    loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                   ast.Less(i, ast.c_sym(arity)),
                   ast.Incr(i, ast.c_sym(1)),
                   ast.Block([assignment], open_scope=True))
    k = ast.FunDecl("void", "count_weights", arglist,
                    ast.Block([loop]),
                    pred=["static", "inline"])
    return op2.Kernel(k, "count_weights", opts=parameters["coffee"])
Пример #5
0
def get_injection_kernel(fiat_element, unique_indices, dim=1):
    weights = injection_weights(fiat_element)[unique_indices].T
    ncdof = weights.shape[0]
    nfdof = weights.shape[1]
    # What if we have multiple nodes in same location (DG)?  Divide by
    # rowsum.
    weights = weights / np.sum(weights, axis=1).reshape(-1, 1)

    all_same = np.allclose(weights, weights[0, 0])

    arglist = [
        ast.Decl("double", ast.Symbol("coarse", (ncdof * dim, ))),
        ast.Decl("double *restrict *restrict ",
                 ast.Symbol("fine", ()),
                 qualifiers=["const"])
    ]
    if all_same:
        w_sym = ast.Symbol("weights", ())
        w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])]
    else:
        init = ast.ArrayInit(format_array_literal(weights))
        w_sym = ast.Symbol("weights", (ncdof, nfdof))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]

    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    if all_same:
        assign = ast.Prod(ast.Symbol("fine", (j, k)), w_sym)
    else:
        assign = ast.Prod(ast.Symbol("fine", (j, k)),
                          ast.Symbol("weights", (i, j)))
    assignment = ast.Incr(
        ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "injection",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "injection", opts=parameters["coffee"])
Пример #6
0
def ker_ind_inc():
    return ast.FunDecl(
        'void', 'ker_ind_inc', [
            ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=['', '']),
            ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=[''])
        ],
        ast.Block([ast.Incr(ast.Symbol('B', (0, 0)), ast.Symbol('A', (0, )))]))
Пример #7
0
def expression_kernel(expr, args):
    """Produce a :class:`pyop2.Kernel` from the processed UFL expression
    expr and the corresponding args."""

    # Empty slot indicating assignment to indexed LHS, so don't do anything
    if type(expr) is Zero:
        return

    fs = args[0].function.function_space()

    d = ast.Symbol("dim")
    ast_expr = _ast(expr)
    body = ast.Block(
        (
            ast.Decl("int", d),
            ast.For(ast.Assign(d, ast.Symbol(0)),
                    ast.Less(d, ast.Symbol(fs.dof_dset.cdim)),
                    ast.Incr(d, ast.Symbol(1)),
                    ast_expr)
        )
    )

    return op2.Kernel(ast.FunDecl("void", "expression",
                                  [arg.arg for arg in args], body),
                      "expression")
Пример #8
0
def ker_ind_reduce():
    incr = ast.Incr(ast.Symbol('A', ('i',)), ast.Symbol('B', (0, 0)))
    body = ItSpace().to_for([(0, 2)], ('i',), [incr])
    return ast.FunDecl('void', 'ker_ind_reduce',
                       [ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=['']),
                        ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=['', ''])],
                       ast.Block(body))
Пример #9
0
    def ast_matmul(self, F_a):
        """Generate an AST for a PyOP2 kernel performing a matrix-vector multiplication.

        :param F_a: Assembled firedrake.Function object for the RHS"""

        # The number of dofs on each element is /ndofs*cdim/
        F_a_fs = F_a.function_space()
        ndofs = sum(F_a_fs.topological.dofs_per_entity)
        cdim = F_a_fs.dim
        name = 'mat_vec_mul_kernel_%s' % F_a_fs.name

        identifier = (ndofs, cdim, name)
        if identifier in self.asts:
            return self.asts[identifier]

        # Craft the AST
        body = ast.Incr(ast.Symbol('C', ('i/%d' % cdim, 'i%%%d' % cdim)),
                        ast.Prod(ast.Symbol('A', ('i',), ((ndofs*cdim, 'j*%d + k' % cdim),)),
                                 ast.Symbol('B', ('j', 'k'))))
        body = ast.c_for('k', cdim, body).children[0]
        body = [ast.Assign(ast.Symbol('C', ('i/%d' % cdim, 'i%%%d' % cdim)), '0.0'),
                ast.c_for('j', ndofs, body).children[0]]
        body = ast.Root([ast.c_for('i', ndofs*cdim, body).children[0]])
        funargs = [ast.Decl('double*', 'A'), ast.Decl('double**', 'B'), ast.Decl('double**', 'C')]
        fundecl = ast.FunDecl('void', name, funargs, body, ['static', 'inline'])

        # Track the AST for later fast retrieval
        self.asts[identifier] = fundecl

        return fundecl
Пример #10
0
def get_prolongation_kernel(fiat_element, unique_indices, dim=1):
    weights = get_restriction_weights(fiat_element)[unique_indices]
    nfdof = weights.shape[0]
    ncdof = weights.shape[1]
    arglist = [
        ast.Decl("double", ast.Symbol("fine", (nfdof * dim, ))),
        ast.Decl("double",
                 ast.Symbol("*restrict *restrict coarse", ()),
                 qualifiers=["const"])
    ]
    all_same = np.allclose(weights, weights[0, 0])

    if all_same:
        w_sym = ast.Symbol("weights", ())
        w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])]
    else:
        w_sym = ast.Symbol("weights", (nfdof, ncdof))
        init = ast.ArrayInit(format_array_literal(weights))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]
    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    if all_same:
        assign = ast.Prod(ast.Symbol("coarse", (j, k)), w_sym)
    else:
        assign = ast.Prod(ast.Symbol("coarse", (j, k)),
                          ast.Symbol("weights", (i, j)))

    assignment = ast.Incr(
        ast.Symbol("fine", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(ncdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(nfdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "prolongation",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "prolongation", opts=parameters["coffee"])
Пример #11
0
def statement_for(tree, parameters):
    extent = tree.index.extent
    assert extent
    i = _coffee_symbol(parameters.index_names[tree.index])
    # TODO: symbolic constant for "int"
    return coffee.For(coffee.Decl("int", i, init=0), coffee.Less(i, extent),
                      coffee.Incr(i, 1), statement(tree.children[0],
                                                   parameters))
Пример #12
0
def statement_for(tree, parameters):
    if tree.index in parameters.argument_indices:
        pragma = "#pragma coffee linear loop"
    else:
        pragma = None
    extent = tree.index.extent
    assert extent
    i = _coffee_symbol(parameters.index_names[tree.index])
    # TODO: symbolic constant for "int"
    return coffee.For(coffee.Decl("int", i, init=0),
                      coffee.Less(i, extent),
                      coffee.Incr(i, 1),
                      statement(tree.children[0], parameters),
                      pragma=pragma)
Пример #13
0
def statement_return(leaf, parameters):
    pragma = _root_pragma(leaf.expression, parameters)
    return coffee.Incr(expression(leaf.variable, parameters),
                       expression(leaf.expression, parameters),
                       pragma=pragma)
Пример #14
0
def tensor_assembly_calls(builder):
    """Generates a block of statements for assembling the local
    finite element tensors.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information and
                  assembly calls.
    """
    statements = [ast.FlatBlock("/* Assemble local tensors */\n")]

    # Cell integrals are straightforward. Just splat them out.
    statements.extend(builder.assembly_calls["cell"])

    if builder.needs_cell_facets:
        # The for-loop will have the general structure:
        #
        #    FOR (facet=0; facet<num_facets; facet++):
        #        IF (facet is interior):
        #            *interior calls
        #        ELSE IF (facet is exterior):
        #            *exterior calls
        #
        # If only interior (exterior) facets are present,
        # then only a single IF-statement checking for interior
        # (exterior) facets will be present within the loop. The
        # cell facets are labelled `1` for interior, and `0` for
        # exterior.

        statements.append(ast.FlatBlock("/* Loop over cell facets */\n"))
        int_calls = list(
            chain(*[
                builder.assembly_calls[it_type]
                for it_type in ("interior_facet", "interior_facet_vert")
            ]))
        ext_calls = list(
            chain(*[
                builder.assembly_calls[it_type]
                for it_type in ("exterior_facet", "exterior_facet_vert")
            ]))

        # Compute the number of facets to loop over
        domain = builder.expression.ufl_domain()
        if domain.cell_set._extruded:
            num_facets = domain.ufl_cell()._cells[0].num_facets()
        else:
            num_facets = domain.ufl_cell().num_facets()

        if_ext = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, )), 0)
        if_int = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, )), 1)
        body = []
        if ext_calls:
            body.append(
                ast.If(if_ext, (ast.Block(ext_calls, open_scope=True), )))
        if int_calls:
            body.append(
                ast.If(if_int, (ast.Block(int_calls, open_scope=True), )))

        statements.append(
            ast.For(ast.Decl("unsigned int", builder.it_sym, init=0),
                    ast.Less(builder.it_sym, num_facets),
                    ast.Incr(builder.it_sym, 1), body))

    if builder.needs_mesh_layers:
        # In the presence of interior horizontal facet calls, an
        # IF-ELIF-ELSE block is generated using the mesh levels
        # as conditions for which calls are needed:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #    ELSE IF (layer == top_layer):
        #        *top calls
        #    ELSE:
        #        *top calls
        #        *bottom calls
        #
        # Any extruded top or bottom calls for extruded facets are
        # included within the appropriate mesh-level IF-blocks. If
        # no interior horizontal facet calls are present, then
        # standard IF-blocks are generated for exterior top/bottom
        # facet calls when appropriate:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #
        #    IF (layer == top_layer):
        #        *top calls
        #
        # The mesh level is an integer provided as a macro kernel
        # argument.

        # FIXME: No variable layers assumption
        statements.append(ast.FlatBlock("/* Mesh levels: */\n"))
        num_layers = builder.expression.ufl_domain().topological.layers - 1
        int_top = builder.assembly_calls["interior_facet_horiz_top"]
        int_btm = builder.assembly_calls["interior_facet_horiz_bottom"]
        ext_top = builder.assembly_calls["exterior_facet_top"]
        ext_btm = builder.assembly_calls["exterior_facet_bottom"]

        bottom = ast.Block(int_top + ext_btm, open_scope=True)
        top = ast.Block(int_btm + ext_top, open_scope=True)
        rest = ast.Block(int_btm + int_top, open_scope=True)
        statements.append(
            ast.If(ast.Eq(builder.mesh_layer_sym, 0),
                   (bottom,
                    ast.If(ast.Eq(builder.mesh_layer_sym, num_layers - 1),
                           (top, rest)))))

    return statements
Пример #15
0
def generate_kernel_ast(builder, statements, declared_temps):
    """Glues together the complete AST for the Slate expression
    contained in the :class:`LocalKernelBuilder`.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information.
    :arg statements: A list of COFFEE objects containing all
                     assembly calls and temporary declarations.
    :arg declared_temps: A `dict` containing all previously
                         declared temporaries.

    Return: A `KernelInfo` object describing the complete AST.
    """
    slate_expr = builder.expression
    if slate_expr.rank == 0:
        # Scalars are treated as 1x1 MatrixBase objects
        shape = (1, )
    else:
        shape = slate_expr.shape

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    statements.append(ast.FlatBlock("/* Map eigen tensor into C struct */\n"))
    result_sym = ast.Symbol("T%d" % len(declared_temps))
    result_data_sym = ast.Symbol("A%d" % len(declared_temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    statements.append(ast.FlatBlock("/* Linear algebra expression */\n"))
    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, builder.coord_sym)]

    # Orientation information
    if builder.oriented:
        args.append(ast.Decl("int **", builder.cell_orientations_sym))

    # Coefficient information
    expr_coeffs = slate_expr.coefficients()
    for c in expr_coeffs:
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)])

    # Facet information
    if builder.needs_cell_facets:
        args.append(
            ast.Decl("%s *" % as_cstr(cell_to_facets_dtype),
                     builder.cell_facet_sym))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel.
    if builder.needs_mesh_layers:
        args.append(ast.Decl("int", builder.mesh_layer_sym))

    # Macro kernel
    macro_kernel_name = "compile_slate"
    stmts = ast.Block(statements)
    macro_kernel = ast.FunDecl("void",
                               macro_kernel_name,
                               args,
                               stmts,
                               pred=["static", "inline"])

    # Construct the final ast
    kernel_ast = ast.Node(builder.templated_subkernels + [macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel and include the
    # Eigen header files
    include_dirs = builder.include_dirs
    include_dirs.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=include_dirs,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=tuple(range(len(expr_coeffs))),
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers)

    return kinfo
Пример #16
0
def compile_c_kernel(expression, to_pts, to_element, fs, coords):
    """Produce a :class:`PyOP2.Kernel` from the c expression provided."""

    coords_space = coords.function_space()
    coords_element = create_element(coords_space.ufl_element(),
                                    vector_is_mixed=False)

    names = {v[0] for v in expression._user_args}

    X = list(coords_element.tabulate(0, to_pts).values())[0]

    # Produce C array notation of X.
    X_str = "{{" + "},\n{".join([",".join(map(str, x)) for x in X.T]) + "}}"

    A = utils.unique_name("A", names)
    X = utils.unique_name("X", names)
    x_ = utils.unique_name("x_", names)
    k = utils.unique_name("k", names)
    d = utils.unique_name("d", names)
    i_ = utils.unique_name("i", names)
    # x is a reserved name.
    x = "x"
    if "x" in names:
        raise ValueError(
            "cannot use 'x' as a user-defined Expression variable")
    ass_exp = [
        ast.Assign(ast.Symbol(A, (k, ), ((len(expression.code), i), )),
                   ast.FlatBlock("%s" % code))
        for i, code in enumerate(expression.code)
    ]

    dim = coords_space.value_size
    ndof = to_element.space_dimension()
    xndof = coords_element.space_dimension()
    nfdof = to_element.space_dimension() * numpy.prod(fs.value_size, dtype=int)

    init_X = ast.Decl(typ="double",
                      sym=ast.Symbol(X, rank=(ndof, xndof)),
                      qualifiers=["const"],
                      init=X_str)
    init_x = ast.Decl(typ="double",
                      sym=ast.Symbol(x, rank=(coords_space.value_size, )))
    init_pi = ast.Decl(typ="double",
                       sym="pi",
                       qualifiers=["const"],
                       init="3.141592653589793")
    init = ast.Block([init_X, init_x, init_pi])
    incr_x = ast.Incr(
        ast.Symbol(x, rank=(d, )),
        ast.Prod(ast.Symbol(X, rank=(k, i_)),
                 ast.Symbol(x_, rank=(ast.Sum(ast.Prod(i_, dim), d), ))))
    assign_x = ast.Assign(ast.Symbol(x, rank=(d, )), 0)
    loop_x = ast.For(init=ast.Decl("unsigned int", i_, 0),
                     cond=ast.Less(i_, xndof),
                     incr=ast.Incr(i_, 1),
                     body=[incr_x])

    block = ast.For(init=ast.Decl("unsigned int", d, 0),
                    cond=ast.Less(d, dim),
                    incr=ast.Incr(d, 1),
                    body=[assign_x, loop_x])
    loop = ast.c_for(k, ndof, ast.Block([block] + ass_exp, open_scope=True))
    user_args = []
    user_init = []
    for _, arg in expression._user_args:
        if arg.shape == (1, ):
            user_args.append(ast.Decl("double *", "%s_" % arg.name))
            user_init.append(
                ast.FlatBlock("const double %s = *%s_;" %
                              (arg.name, arg.name)))
        else:
            user_args.append(ast.Decl("double *", arg.name))
    kernel_code = ast.FunDecl(
        "void", "expression_kernel", [
            ast.Decl("double", ast.Symbol(A, (nfdof, ))),
            ast.Decl("double*", x_)
        ] + user_args, ast.Block(user_init + [init, loop], open_scope=False))
    coefficients = [coords]
    for _, arg in expression._user_args:
        coefficients.append(GlobalWrapper(arg))
    return op2.Kernel(kernel_code,
                      kernel_code.name), False, tuple(coefficients)
Пример #17
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a SLATE expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the SLATE expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of ufl forms.
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError(
            "Expecting a `slate.TensorBase` expression, not a %r" % slate_expr)

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # Initialize shape and statements list
    shape = slate_expr.shape
    statements = []

    # Create a builder for the SLATE expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate and facet symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cellfacetsym = ast.Symbol("cell_facets")
    inc = []

    # Now we construct the list of statements to provide to the builder
    context_temps = builder.temps.copy()
    for exp, t in context_temps.items():
        statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
        statements.append(ast.FlatBlock("%s.setZero();\n" % t))

        for splitkernel in builder.kernel_exprs[exp]:
            clist = []
            index = splitkernel.indices
            kinfo = splitkernel.kinfo
            integral_type = kinfo.integral_type

            if integral_type not in [
                    "cell", "interior_facet", "exterior_facet"
            ]:
                raise NotImplementedError(
                    "Integral type %s not currently supported." %
                    integral_type)

            coordinates = exp.ufl_domain().coordinates
            if coords is not None:
                assert coordinates == coords
            else:
                coords = coordinates

            for cindex in kinfo.coefficient_map:
                c = exp.coefficients()[cindex]
                # Handles both mixed and non-mixed coefficient cases
                clist.extend(builder.extract_coefficient(c))

            inc.extend(kinfo.kernel._include_dirs)

            tensor = eigen_tensor(exp, t, index)

            if integral_type in ["interior_facet", "exterior_facet"]:
                builder.require_cell_facets()
                itsym = ast.Symbol("i0")
                clist.append(ast.FlatBlock("&%s" % itsym))
                loop_body = []
                nfacet = exp.ufl_domain().ufl_cell().num_facets()

                if integral_type == "exterior_facet":
                    checker = 1
                else:
                    checker = 0
                loop_body.append(
                    ast.If(
                        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )),
                               checker), [
                                   ast.Block([
                                       ast.FunCall(kinfo.kernel.name, tensor,
                                                   coordsym, *clist)
                                   ],
                                             open_scope=True)
                               ]))
                loop = ast.For(ast.Decl("unsigned int", itsym, init=0),
                               ast.Less(itsym, nfacet), ast.Incr(itsym, 1),
                               loop_body)
                statements.append(loop)
            else:
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    # Now we handle any terms that require auxiliary data (if any)
    if bool(builder.aux_exprs):
        aux_temps, aux_statements = auxiliary_information(builder)
        context_temps.update(aux_temps)
        statements.extend(aux_statements)

    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, context_temps))
    statements.append(ast.Assign(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]
    for c in slate_expr.coefficients():
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([
            ast.Decl(ctype, sym_c) for sym_c in builder.extract_coefficient(c)
        ])

    if builder.needs_cell_facets:
        args.append(ast.Decl("char *", cellfacetsym))

    macro_kernel_name = "compile_slate"
    kernel_ast, oriented = builder.construct_ast(
        name=macro_kernel_name, args=args, statements=ast.Block(statements))

    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type="cell",
                       oriented=oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=range(len(slate_expr.coefficients())),
                       needs_cell_facets=builder.needs_cell_facets)
    idx = tuple([0] * slate_expr.rank)

    return (SplitKernel(idx, kinfo), )
Пример #18
0
    def init_cell_orientations(self, expr):
        """Compute and initialise :attr:`cell_orientations` relative to a specified orientation.

        :arg expr: an :class:`.Expression` evaluated to produce a
             reference normal direction.

        """
        import firedrake.function as function
        import firedrake.functionspace as functionspace

        if expr.value_shape()[0] != 3:
            raise NotImplementedError('Only implemented for 3-vectors')
        if self.ufl_cell() not in (ufl.Cell('triangle', 3), ufl.Cell("quadrilateral", 3), ufl.OuterProductCell(ufl.Cell('interval'), ufl.Cell('interval'), gdim=3)):
            raise NotImplementedError('Only implemented for triangles and quadrilaterals embedded in 3d')

        if hasattr(self.topology, '_cell_orientations'):
            raise RuntimeError("init_cell_orientations already called, did you mean to do so again?")

        v0 = lambda x: ast.Symbol("v0", (x,))
        v1 = lambda x: ast.Symbol("v1", (x,))
        n = lambda x: ast.Symbol("n", (x,))
        x = lambda x: ast.Symbol("x", (x,))
        coords = lambda x, y: ast.Symbol("coords", (x, y))

        body = []
        body += [ast.Decl("double", v(3)) for v in [v0, v1, n, x]]
        body.append(ast.Decl("double", "dot"))
        body.append(ast.Assign("dot", 0.0))
        body.append(ast.Decl("int", "i"))

        # if triangle, use v0 = x1 - x0, v1 = x2 - x0
        # otherwise, for the various quads, use v0 = x2 - x0, v1 = x1 - x0
        # recall reference element ordering:
        # triangle: 2        quad: 1 3
        #           0 1            0 2
        if self.ufl_cell() == ufl.Cell('triangle', 3):
            body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                                [ast.Assign(v0("i"), ast.Sub(coords(1, "i"), coords(0, "i"))),
                                 ast.Assign(v1("i"), ast.Sub(coords(2, "i"), coords(0, "i"))),
                                 ast.Assign(x("i"), 0.0)]))
        else:
            body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                                [ast.Assign(v0("i"), ast.Sub(coords(2, "i"), coords(0, "i"))),
                                 ast.Assign(v1("i"), ast.Sub(coords(1, "i"), coords(0, "i"))),
                                 ast.Assign(x("i"), 0.0)]))

        # n = v0 x v1
        body.append(ast.Assign(n(0), ast.Sub(ast.Prod(v0(1), v1(2)), ast.Prod(v0(2), v1(1)))))
        body.append(ast.Assign(n(1), ast.Sub(ast.Prod(v0(2), v1(0)), ast.Prod(v0(0), v1(2)))))
        body.append(ast.Assign(n(2), ast.Sub(ast.Prod(v0(0), v1(1)), ast.Prod(v0(1), v1(0)))))

        body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                            [ast.Incr(x(j), coords("i", j)) for j in range(3)]))

        body.extend([ast.FlatBlock("dot += (%(x)s) * n[%(i)d];\n" % {"x": x_, "i": i})
                     for i, x_ in enumerate(expr.code)])
        body.append(ast.Assign("orientation[0][0]", ast.Ternary(ast.Less("dot", 0), 1, 0)))

        kernel = op2.Kernel(ast.FunDecl("void", "cell_orientations",
                                        [ast.Decl("int**", "orientation"),
                                         ast.Decl("double**", "coords")],
                                        ast.Block(body)),
                            "cell_orientations")

        # Build the cell orientations as a DG0 field (so that we can
        # pass it in for facet integrals and the like)
        fs = functionspace.FunctionSpace(self, 'DG', 0)
        cell_orientations = function.Function(fs, name="cell_orientations", dtype=np.int32)
        op2.par_loop(kernel, self.cell_set,
                     cell_orientations.dat(op2.WRITE, cell_orientations.cell_node_map()),
                     self.coordinates.dat(op2.READ, self.coordinates.cell_node_map()))
        self.topology._cell_orientations = cell_orientations
Пример #19
0
def tensor_assembly_calls(builder):
    """Generates a block of statements for assembling the local
    finite element tensors.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information and assembly calls.
    """
    assembly_calls = builder.assembly_calls
    statements = [ast.FlatBlock("/* Assemble local tensors */\n")]

    # Cell integrals are straightforward. Just splat them out.
    statements.extend(assembly_calls["cell"])

    if builder.needs_cell_facets:
        # The for-loop will have the general structure:
        #
        #    FOR (facet=0; facet<num_facets; facet++):
        #        IF (facet is interior):
        #            *interior calls
        #        ELSE IF (facet is exterior):
        #            *exterior calls
        #
        # If only interior (exterior) facets are present,
        # then only a single IF-statement checking for interior
        # (exterior) facets will be present within the loop. The
        # cell facets are labelled `1` for interior, and `0` for
        # exterior.
        statements.append(ast.FlatBlock("/* Loop over cell facets */\n"))
        int_calls = list(
            chain(*[
                assembly_calls[it_type]
                for it_type in ("interior_facet", "interior_facet_vert")
            ]))
        ext_calls = list(
            chain(*[
                assembly_calls[it_type]
                for it_type in ("exterior_facet", "exterior_facet_vert")
            ]))

        # Generate logical statements for handling exterior/interior facet
        # integrals on subdomains.
        # Currently only facet integrals are supported.
        for sd_type in ("subdomains_exterior_facet",
                        "subdomains_interior_facet"):
            stmts = []
            for sd, sd_calls in groupby(assembly_calls[sd_type],
                                        lambda x: x[0]):
                _, calls = zip(*sd_calls)
                if_sd = ast.Eq(
                    ast.Symbol(builder.cell_facet_sym,
                               rank=(builder.it_sym, 1)), sd)
                stmts.append(
                    ast.If(if_sd, (ast.Block(calls, open_scope=True), )))

            if sd_type == "subdomains_exterior_facet":
                ext_calls.extend(stmts)
            if sd_type == "subdomains_interior_facet":
                int_calls.extend(stmts)

        # Compute the number of facets to loop over
        domain = builder.expression.ufl_domain()
        if domain.cell_set._extruded:
            num_facets = domain.ufl_cell()._cells[0].num_facets()
        else:
            num_facets = domain.ufl_cell().num_facets()

        if_ext = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, 0)), 0)
        if_int = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, 0)), 1)
        body = []
        if ext_calls:
            body.append(
                ast.If(if_ext, (ast.Block(ext_calls, open_scope=True), )))
        if int_calls:
            body.append(
                ast.If(if_int, (ast.Block(int_calls, open_scope=True), )))

        statements.append(
            ast.For(ast.Decl("unsigned int", builder.it_sym, init=0),
                    ast.Less(builder.it_sym, num_facets),
                    ast.Incr(builder.it_sym, 1), body))

    if builder.needs_mesh_layers:
        # In the presence of interior horizontal facet calls, an
        # IF-ELIF-ELSE block is generated using the mesh levels
        # as conditions for which calls are needed:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #    ELSE IF (layer == top_layer):
        #        *top calls
        #    ELSE:
        #        *top calls
        #        *bottom calls
        #
        # Any extruded top or bottom calls for extruded facets are
        # included within the appropriate mesh-level IF-blocks. If
        # no interior horizontal facet calls are present, then
        # standard IF-blocks are generated for exterior top/bottom
        # facet calls when appropriate:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #
        #    IF (layer == top_layer):
        #        *top calls
        #
        # The mesh level is an integer provided as a macro kernel
        # argument.

        # FIXME: No variable layers assumption
        statements.append(ast.FlatBlock("/* Mesh levels: */\n"))
        num_layers = ast.Symbol(builder.mesh_layer_count_sym, rank=(0, ))
        layer = builder.mesh_layer_sym
        types = [
            "interior_facet_horiz_top", "interior_facet_horiz_bottom",
            "exterior_facet_top", "exterior_facet_bottom"
        ]
        decide = [
            ast.Less(layer, num_layers),
            ast.Greater(layer, 0),
            ast.Eq(layer, num_layers),
            ast.Eq(layer, 0)
        ]
        for (integral_type, which) in zip(types, decide):
            statements.append(
                ast.If(which, (ast.Block(assembly_calls[integral_type],
                                         open_scope=True), )))

    return statements
Пример #20
0
def generate_kernel_ast(builder, statements, declared_temps):
    """Glues together the complete AST for the Slate expression
    contained in the :class:`LocalKernelBuilder`.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information.
    :arg statements: A list of COFFEE objects containing all
        assembly calls and temporary declarations.
    :arg declared_temps: A `dict` containing all previously
        declared temporaries.

    Return: A `KernelInfo` object describing the complete AST.
    """
    slate_expr = builder.expression
    if slate_expr.rank == 0:
        # Scalars are treated as 1x1 MatrixBase objects
        shape = (1, )
    else:
        shape = slate_expr.shape

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    statements.append(ast.FlatBlock("/* Map eigen tensor into C struct */\n"))
    result_sym = ast.Symbol("T%d" % len(declared_temps))
    result_data_sym = ast.Symbol("A%d" % len(declared_temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(ScalarType_c,
                      ast.Symbol(result_data_sym),
                      pointers=[("restrict", )])
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, ScalarType_c, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    statements.append(ast.FlatBlock("/* Linear algebra expression */\n"))
    cpp_string = ast.FlatBlock(slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [
        result,
        ast.Decl(ScalarType_c,
                 builder.coord_sym,
                 pointers=[("restrict", )],
                 qualifiers=["const"])
    ]

    # Orientation information
    if builder.oriented:
        args.append(
            ast.Decl("int",
                     builder.cell_orientations_sym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))

    # Coefficient information
    expr_coeffs = slate_expr.coefficients()
    for c in expr_coeffs:
        args.extend([
            ast.Decl(ScalarType_c,
                     csym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]) for csym in builder.coefficient(c)
        ])

    # Facet information
    if builder.needs_cell_facets:
        f_sym = builder.cell_facet_sym
        f_arg = ast.Symbol("arg_cell_facets")
        f_dtype = as_cstr(cell_to_facets_dtype)

        # cell_facets is locally a flattened 2-D array. We typecast here so we
        # can access its entries using standard array notation.
        cast = "%s (*%s)[2] = (%s (*)[2])%s;\n" % (f_dtype, f_sym, f_dtype,
                                                   f_arg)
        statements.insert(0, ast.FlatBlock(cast))
        args.append(
            ast.Decl(f_dtype,
                     f_arg,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel
    # and the amount of layers before that.
    if builder.needs_mesh_layers:
        args.append(
            ast.Decl("int",
                     builder.mesh_layer_count_sym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))
        args.append(ast.Decl("int", builder.mesh_layer_sym))

    # Cell size information
    if builder.needs_cell_sizes:
        args.append(
            ast.Decl(ScalarType_c,
                     builder.cell_size_sym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))

    # Macro kernel
    macro_kernel_name = "pyop2_kernel_compile_slate"
    stmts = ast.Block(statements)
    macro_kernel = ast.FunDecl("void",
                               macro_kernel_name,
                               args,
                               stmts,
                               pred=["static", "inline"])

    # Construct the final ast
    kernel_ast = ast.Node(builder.templated_subkernels + [macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel and include the
    # Eigen header files
    include_dirs = list(builder.include_dirs)
    include_dirs.append(EIGEN_INCLUDE_DIR)
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=include_dirs,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    op2kernel.num_flops = builder.expression_flops + builder.terminal_flops
    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=slate_expr.coeff_map,
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers,
                       needs_cell_sizes=builder.needs_cell_sizes)

    return kinfo
Пример #21
0
def _generate_functions(functions, sets):
    "Generate declarations for functions and code to compute values."

    f_comment      = format["comment"]
    f_double       = format["float declaration"]
    f_F            = format["function value"]
    f_float        = format["floating point"]
    f_decl         = format["declaration"]
    f_r            = format["free indices"]
    f_iadd         = format["iadd"]
    f_loop         = format["generate loop"]

    # Create the function declarations -- only the (unique) variables we need
    const_vardecls = set(fd.id for fd in functions.values() if fd.cellwise_constant)
    const_ast_items = [pyop2.Decl(f_double, c_sym(f_F(n)), c_sym(f_float(0)))
                       for n in const_vardecls]

    vardecls = set(fd.id for fd in functions.values() if not fd.cellwise_constant)
    ast_items = [pyop2.Decl(f_double, c_sym(f_F(n)), c_sym(f_float(0)))
                 for n in vardecls]

    # Get sets.
    used_psi_tables = sets[1]
    used_nzcs = sets[2]

    # Sort functions after being cellwise constant and loop ranges.
    function_groups = collections.defaultdict(list)
    for f, fd in functions.items():
        function_groups[(fd.cellwise_constant, fd.loop_range)].append(f)

    total_ops = 0
    # Loop ranges and get list of functions.
    for (cellwise_constant, loop_range), function_list in function_groups.iteritems():
        function_expr = []
        # Loop functions.
        func_ops = 0
        for function in function_list:
            data = functions[function]
            range_i = data.loop_range
            if not isinstance(range_i, tuple):
                range_i = tuple([range_i])

            # Add name to used psi names and non zeros name to used_nzcs.
            used_psi_tables.add(data.psi_name)
            used_nzcs.update(data.used_nzcs)

            # # TODO: This check can be removed for speed later.
            # REMOVED this, since we might need to increment into the same
            # number more than once for mixed element + interior facets
            # ffc_assert(data.id not in function_expr, "This is definitely not supposed to happen!")

            # Convert function to COFFEE ast node, save string
            # representation for sorting (such that we're reproducible
            # in parallel).
            function = visit_rhs(function)
            key = str(function)
            function_expr.append((data.id, function, key))

            # Get number of operations to compute entry and add to function operations count.
            func_ops += (data.ops + 1)*sum(range_i)

        # Gather, sorted by string rep of function.
        lines = [pyop2.Incr(c_sym(f_F(n)), fn) for n, fn, _ in sorted(function_expr, key=lambda x: x[2])]
        if isinstance(loop_range, tuple):
            if not all(map(lambda x: x==loop_range[0], loop_range)):
                raise RuntimeError("General mixed elements not yet supported in PyOP2")
            loop_vars = [ (f_r[0], 0, loop_range[0]), (f_r[1], 0, len(loop_range)) ]
        else:
            loop_vars = [(f_r[0], 0, loop_range)]
        # TODO: If loop_range == 1, this loop may be unneccessary. Not sure if it's safe to just skip it.
        it_var = c_sym(loop_vars[0][0])
        loop_size = c_sym(loop_vars[0][2])
        ast_item = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, loop_size),
                             pyop2.Incr(it_var, c_sym(1)), pyop2.Block(lines, open_scope=True))
        if cellwise_constant:
            const_ast_items.append(ast_item)
        else:
            ast_items.append(ast_item)

    return const_ast_items, ast_items, total_ops
Пример #22
0
def statement_accumulate(leaf, parameters):
    pragma = _root_pragma(leaf.indexsum, parameters)
    return coffee.Incr(_ref_symbol(leaf.indexsum, parameters),
                       expression(leaf.indexsum.children[0], parameters),
                       pragma=pragma)
Пример #23
0
def _generate_element_tensor(integrals, sets, optimise_parameters, parameters):
    "Construct quadrature code for element tensors."

    # Prefetch formats to speed up code generation.
    f_comment    = format["comment"]
    f_ip         = format["integration points"]
    f_I          = format["ip constant"]
    f_loop       = format["generate loop"]
    f_ip_coords  = format["generate ip coordinates"]
    f_coords     = format["coordinate_dofs"]
    f_double     = format["float declaration"]
    f_decl       = format["declaration"]
    f_X          = format["ip coordinates"]
    f_C          = format["conditional"]


    # Initialise return values.
    tensor_ops_count = 0

    ffc_assert(1 == len(integrals), "This function is not capable of handling multiple integrals.")

    # We receive a dictionary {num_points: form,}.
    # Loop points and forms.
    for points, terms, functions, ip_consts, coordinate, conditionals in integrals:

        nest_ir = []
        ip_ir = []
        num_ops = 0

        # Generate code to compute coordinates if used.
        if coordinate:
            raise RuntimeError("Don't know how to compute coordinates")
            # Left in place for posterity
            name, gdim, ip, r = coordinate
            element_code += ["", f_comment("Declare array to hold physical coordinate of quadrature point.")]
            element_code += [f_decl(f_double, f_X(points, gdim))]
            ops, coord_code = f_ip_coords(gdim, points, name, ip, r)
            ip_code += ["", f_comment("Compute physical coordinate of quadrature point, operations: %d." % ops)]
            ip_code += [coord_code]
            num_ops += ops
            # Update used psi tables and transformation set.
            sets[1].add(name)
            sets[3].add(f_coords(r))

        # Generate code to compute function values.
        if functions:
            const_func_code, func_code, ops = _generate_functions(functions, sets)
            nest_ir += const_func_code
            ip_ir += func_code
            num_ops += ops

        # Generate code to compute conditionals (might depend on coordinates
        # and function values so put here).
        # TODO: Some conditionals might only depend on geometry so they
        # should be moved outside if possible.
        if conditionals:
            ip_ir.append(pyop2.Decl(f_double, c_sym(f_C(len(conditionals)))))
            # Sort conditionals (need to in case of nested conditionals).
            reversed_conds = dict([(n, (o, e)) for e, (t, o, n) in conditionals.items()])
            for num in range(len(conditionals)):
                name = format["conditional"](num)
                ops, expr = reversed_conds[num]
                ip_ir.append(pyop2.Assign(c_sym(name), visit_rhs(expr)))
                num_ops += ops

        # Generate code for ip constant declarations.
        # TODO: this code should be removable as only executed when ffc's optimisations are on
        ip_const_ops, ip_const_code = generate_aux_constants(ip_consts, f_I,\
                                        format["assign"], True)
        if len(ip_const_code) > 0:
            raise RuntimeError("IP Const code not supported")
        num_ops += ip_const_ops

        # Generate code to evaluate the element tensor.
        code, ops = _generate_integral_ir(points, terms, sets, optimise_parameters, parameters)
        num_ops += ops
        tensor_ops_count += num_ops*points
        ip_ir += code

        # Loop code over all IPs.
        # @@@: for (ip ...) { A[0][0] += ... }
        if points > 1:
            it_var = pyop2.Symbol(f_ip, ())
            nest_ir += [pyop2.For(pyop2.Decl("int", it_var, c_sym(0)),
                                  pyop2.Less(it_var, c_sym(points)),
                                  pyop2.Incr(it_var, c_sym(1)),
                                  pyop2.Block(ip_ir, open_scope=True))]
        else:
            nest_ir += ip_ir

    return (nest_ir, tensor_ops_count)
Пример #24
0
def statement_returnaccumulate(leaf, parameters):
    pragma = _root_pragma(leaf.indexsum, parameters)
    return coffee.Incr(expression(leaf.variable, parameters),
                       expression(leaf.indexsum.children[0], parameters),
                       pragma=pragma)
Пример #25
0
def _generate_integral_ir(points, terms, sets, optimise_parameters, parameters):
    "Generate code to evaluate the element tensor."

    # For checking if the integral code is for a matrix
    def is_matrix(loop):
        loop_indices = [ l[0] for l in loop ]
        return (format["first free index"] in loop_indices and \
                format["second free index"] in loop_indices)

    # Prefetch formats to speed up code generation.
    p_format        = parameters["format"]
    f_comment       = format["comment"]
    f_mul           = format["mul"]
    f_scale_factor  = format["scale factor"]
    f_iadd          = format["iadd"]
    f_add           = format["add"]
    f_A             = format["element tensor"][p_format]
    f_j             = format["first free index"]
    f_k             = format["second free index"]
    f_loop          = format["generate loop"]
    f_B             = format["basis constant"]

    # Initialise return values.
    code = []
    num_ops = 0
    loops = {}

    # Extract sets.
    used_weights, used_psi_tables, used_nzcs, trans_set = sets

    nests = []
    # Loop terms and create code.
    for loop, (data, entry_vals) in terms.items():
        # If we don't have any entry values, there's no need to generate the loop.
        if not entry_vals:
            continue

        # Get data.
        t_set, u_weights, u_psi_tables, u_nzcs, basis_consts = data

        # If we have a value, then we also need to update the sets of used variables.
        trans_set.update(t_set)
        used_weights.update(u_weights)
        used_psi_tables.update(u_psi_tables)
        used_nzcs.update(u_nzcs)

        # @@@: A[0][0] += FE0[ip][j]*FE0[ip][k]*W24[ip]*det;

        entry_ir = []
        for entry, value, ops in entry_vals:
            # Left hand side
            it_vars = entry if len(loop) > 0 else (0,)
            rank = tuple(i.loop_index if hasattr(i, 'loop_index') else i for i in it_vars)
            offset = tuple((1, int(i.offset)) if hasattr(i, 'offset') else (1, 0) for i in it_vars)
            local_tensor = pyop2.Symbol(f_A(''), rank, offset)
            # Right hand side
            pyop2_rhs = visit_rhs(value)
            entry_ir.append(pyop2.Incr(local_tensor, pyop2_rhs, "#pragma coffee expression"))

        # Disgusting hack, ensure resulting IR comes out in same order
        # on all processes.
        entry_ir = sorted(entry_ir, key=lambda x: x.gencode())

        if len(loop) == 0:
            nest = pyop2.Block(entry_ir, open_scope=True)
        elif len(loop) in [1, 2]:
            it_var = c_sym(loop[0][0])
            end = c_sym(loop[0][2])
            nest = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, end), \
                             pyop2.Incr(it_var, c_sym(1)), pyop2.Block(entry_ir, open_scope=True), "#pragma coffee itspace")
        if len(loop) == 2:
            it_var = c_sym(loop[1][0])
            end = c_sym(loop[1][2])
            nest_k = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, end), \
                               pyop2.Incr(it_var, c_sym(1)), pyop2.Block(entry_ir, open_scope=True), "#pragma coffee itspace")
            nest.children[0] = pyop2.Block([nest_k], open_scope=True)
        nests.append(nest)

    return nests, num_ops
Пример #26
0
def facet_integral_loop(cxt_kernel, builder, coordsym, cellfacetsym,
                        cell_orientations):
    """Generates a code statement for evaluating exterior/interior facet
    integrals.

    :arg cxt_kernel: A :namedtuple:`ContextKernel` containing all relevant
                     integral types and TSFC kernels associated with the
                     form nested in the expression.
    :arg builder: A :class:`KernelBuilder` containing the expression context.
    :arg coordsym: An `ast.Symbol` object representing coordinate arguments
                   for the kernel.
    :arg cellfacetsym: An `ast.Symbol` representing the cell facets.
    :arg cell_orientations: An `ast.Symbol` representing cell orientation
                            information.

    Returns: A COFFEE code statement and updated include_dirs
    """
    exp = cxt_kernel.tensor
    t = builder.temps[exp]
    it_type = cxt_kernel.original_integral_type
    itsym = ast.Symbol("i0")

    chker = {
        "interior_facet": 1,
        "interior_facet_vert": 1,
        "exterior_facet": 0,
        "exterior_facet_vert": 0
    }

    # Compute the correct number of facets for a particular facet measure
    if it_type in ["interior_facet", "exterior_facet"]:
        # Non-extruded case
        nfacet = exp.ufl_domain().ufl_cell().num_facets()

    elif it_type in ["interior_facet_vert", "exterior_facet_vert"]:
        # Extrusion case
        base_cell = exp.ufl_domain().ufl_cell()._cells[0]
        nfacet = base_cell.num_facets()

    else:
        raise ValueError("Integral type %s not supported." % it_type)

    incl = []
    funcalls = []
    checker = chker[it_type]
    for splitkernel in cxt_kernel.tsfc_kernels:
        index = splitkernel.indices
        kinfo = splitkernel.kinfo

        # Generate an iterable of coefficients to pass to the subkernel
        # if any are required
        clist = [
            c for ci in kinfo.coefficient_map
            for c in builder.coefficient(exp.coefficients()[ci])
        ]

        incl.extend(kinfo.kernel._include_dirs)
        tensor = eigen_tensor(exp, t, index)

        if kinfo.oriented:
            clist.insert(0, cell_orientations)

        clist.append(ast.FlatBlock("&%s" % itsym))
        funcalls.append(
            ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    loop_body = ast.If(
        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )), checker),
        [ast.Block(funcalls, open_scope=True)])

    loop_stmt = ast.For(ast.Decl("unsigned int", itsym, init=0),
                        ast.Less(itsym, nfacet), ast.Incr(itsym, 1), loop_body)

    return loop_stmt, incl
Пример #27
0
def coefficient_temporaries(builder, declared_temps):
    """Generates coefficient temporary statements for assigning
    coefficients to vector temporaries.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information.
    :arg declared_temps: A `dict` keeping track of all declared
        temporaries. This dictionary is updated as coefficients
        are assigned temporaries.

    'AssembledVector's require creating coefficient temporaries to
    store data. The temporaries are created by inspecting the function
    space of the coefficient to compute node and dof extents. The
    coefficient is then assigned values by looping over both the node
    extent and dof extent (double FOR-loop). A double FOR-loop is needed
    for each function space (if the function space is mixed, then a loop
    will be constructed for each component space). The general structure
    of each coefficient loop will be:

         FOR (i1=0; i1<node_extent; i1++):
             FOR (j1=0; j1<dof_extent; j1++):
                 VT0[offset + (dof_extent * i1) + j1] = w_0_0[i1][j1]
                 VT1[offset + (dof_extent * i1) + j1] = w_1_0[i1][j1]
                 .
                 .
                 .

    where wT0, wT1, ... are temporaries for coefficients sharing the
    same node and dof extents. The offset is computed based on whether
    the function space is mixed. The offset is always 0 for non-mixed
    coefficients. If the coefficient is mixed, then the offset is
    incremented by the total number of nodal unknowns associated with
    the component spaces of the mixed space.
    """
    statements = [ast.FlatBlock("/* Coefficient temporaries */\n")]
    j = ast.Symbol("j1")
    loops = [ast.FlatBlock("/* Loops for coefficient temps */\n")]
    for dofs, cinfo_list in builder.coefficient_vecs.items():
        # Collect all coefficients which share the same node/dof extent
        assignments = []
        for cinfo in cinfo_list:
            fs_i = cinfo.space_index
            offset = cinfo.offset_index
            c_shape = cinfo.shape
            vector = cinfo.vector
            function = vector._function
            t = cinfo.local_temp

            if vector not in declared_temps:
                # Declare and initialize coefficient temporary
                c_type = eigen_matrixbase_type(shape=c_shape)
                statements.append(ast.Decl(c_type, t))
                declared_temps[vector] = t

            # Assigning coefficient values into temporary
            coeff_sym = ast.Symbol(builder.coefficient(function)[fs_i],
                                   rank=(j, ))
            index = ast.Sum(offset, j)
            coeff_temp = ast.Symbol(t, rank=(index, ))
            assignments.append(ast.Assign(coeff_temp, coeff_sym))

        # loop over dofs
        loop = ast.For(ast.Decl("unsigned int", j, init=0), ast.Less(j, dofs),
                       ast.Incr(j, 1), assignments)

        loops.append(loop)

    statements.extend(loops)

    return statements
Пример #28
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a Slate expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the Slate expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of
                          ufl forms.

    Returns: A `tuple` containing a `SplitKernel(idx, kinfo)`
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError("Expecting a `TensorBase` expression, not %s" %
                         type(slate_expr))

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # If the expression has already been symbolically compiled, then
    # simply reuse the produced kernel.
    if slate_expr._metakernel_cache is not None:
        return slate_expr._metakernel_cache

    # Initialize coefficients, shape and statements list
    expr_coeffs = slate_expr.coefficients()

    # We treat scalars as 1x1 MatrixBase objects, so we give
    # the right shape to do so and everything just falls out.
    # This bit here ensures the return result has the right
    # shape
    if slate_expr.rank == 0:
        shape = (1, )
    else:
        shape = slate_expr.shape

    statements = []

    # Create a builder for the Slate expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate, cell orientations and facet/layer
    # symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cell_orientations = ast.Symbol("cell_orientations")
    cellfacetsym = ast.Symbol("cell_facets")
    mesh_layer_sym = ast.Symbol("layer")
    inc = []

    # We keep track of temporaries that have been declared
    declared_temps = {}
    for cxt_kernel in builder.context_kernels:
        exp = cxt_kernel.tensor
        t = builder.temps[exp]

        if exp not in declared_temps:
            # Declare and initialize the temporary
            statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
            statements.append(ast.FlatBlock("%s.setZero();\n" % t))
            declared_temps[exp] = t

        it_type = cxt_kernel.original_integral_type

        if it_type not in supported_integral_types:
            raise NotImplementedError("Type %s not supported." % it_type)

        # Explicit checking of coordinates
        coordinates = exp.ufl_domain().coordinates
        if coords is not None:
            assert coordinates == coords
        else:
            coords = coordinates

        if it_type == "cell":
            # Nothing difficult about cellwise integrals. Just need
            # to get coefficient info, include_dirs and append
            # function calls to the appropriate subkernels.

            # If tensor is mixed, there will be more than one SplitKernel
            incl = []
            for splitkernel in cxt_kernel.tsfc_kernels:
                index = splitkernel.indices
                kinfo = splitkernel.kinfo

                # Generate an iterable of coefficients to pass to the subkernel
                # if any are required
                clist = [
                    c for ci in kinfo.coefficient_map
                    for c in builder.coefficient(exp.coefficients()[ci])
                ]

                if kinfo.oriented:
                    clist.insert(0, cell_orientations)

                incl.extend(kinfo.kernel._include_dirs)
                tensor = eigen_tensor(exp, t, index)
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

        elif it_type in [
                "interior_facet", "exterior_facet", "interior_facet_vert",
                "exterior_facet_vert"
        ]:
            # These integral types will require accessing local facet
            # information and looping over facet indices.
            builder.require_cell_facets()
            loop_stmt, incl = facet_integral_loop(cxt_kernel, builder,
                                                  coordsym, cellfacetsym,
                                                  cell_orientations)
            statements.append(loop_stmt)

        elif it_type == "interior_facet_horiz":
            # The infamous interior horizontal facet
            # will have two SplitKernels: one top,
            # one bottom. The mesh layer will determine
            # which kernels we call.
            builder.require_mesh_layers()
            top_sks = [
                k for k in cxt_kernel.tsfc_kernels
                if k.kinfo.integral_type == "exterior_facet_top"
            ]
            bottom_sks = [
                k for k in cxt_kernel.tsfc_kernels
                if k.kinfo.integral_type == "exterior_facet_bottom"
            ]
            assert len(top_sks) == len(bottom_sks), (
                "Number of top and bottom kernels should be equal")
            # Top and bottom kernels need to be sorted by kinfo.indices
            # if the space is mixed to ensure indices match.
            top_sks = sorted(top_sks, key=lambda x: x.indices)
            bottom_sks = sorted(bottom_sks, key=lambda x: x.indices)
            stmt, incl = extruded_int_horiz_facet(exp, builder, top_sks,
                                                  bottom_sks, coordsym,
                                                  mesh_layer_sym,
                                                  cell_orientations)
            statements.append(stmt)

        elif it_type in ["exterior_facet_bottom", "exterior_facet_top"]:
            # These kernels will only be called if we are on
            # the top or bottom layers of the extruded mesh.
            builder.require_mesh_layers()
            stmt, incl = extruded_top_bottom_facet(cxt_kernel, builder,
                                                   coordsym, mesh_layer_sym,
                                                   cell_orientations)
            statements.append(stmt)

        else:
            raise ValueError("Kernel type not recognized: %s" % it_type)

        # Don't duplicate include lines
        inc_dir = list(set(incl) - set(inc))
        inc.extend(inc_dir)

    # Now we handle any terms that require auxiliary temporaries,
    # such as inverses, transposes and actions of a tensor on a
    # coefficient
    if builder.aux_exprs:
        # The declared temps will be updated within this method
        aux_statements = auxiliary_temporaries(builder, declared_temps)
        statements.extend(aux_statements)

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Finalize AST for macro kernel construction
    builder._finalize_kernels_and_update()

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]

    # Orientation information
    if builder.oriented:
        args.append(ast.Decl("int **", cell_orientations))

    # Coefficient information
    for c in expr_coeffs:
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)])

    # Facet information
    if builder.needs_cell_facets:
        args.append(
            ast.Decl("%s *" % as_cstr(cell_to_facets_dtype), cellfacetsym))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel.
    if builder.needs_mesh_layers:
        args.append(ast.Decl("int", mesh_layer_sym))

    # NOTE: In the future we may want to have more than one "macro_kernel"
    macro_kernel_name = "compile_slate"
    stmt = ast.Block(statements)
    macro_kernel = builder.construct_macro_kernel(name=macro_kernel_name,
                                                  args=args,
                                                  statements=stmt)

    # Tell the builder to construct the final ast
    kernel_ast = builder.construct_ast([macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel.
    # Include the Eigen header files
    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1, (
        "No support for multiple domains yet!")

    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=tuple(range(len(expr_coeffs))),
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers)

    idx = tuple([0] * slate_expr.rank)

    kernels = (SplitKernel(idx, kinfo), )

    # Store the resulting kernel for reuse
    slate_expr._metakernel_cache = kernels

    return kernels
Пример #29
0
    def exterior_facet_boundary_node_map(self, V, method):
        """Return the :class:`pyop2.Map` from exterior facets to nodes
        on the boundary.

        :arg V: The function space.
        :arg method:  The method for determining boundary nodes.  See
           :class:`~.DirichletBC` for details.
        """
        try:
            return self.map_caches["boundary_node"][method]
        except KeyError:
            pass
        el = V.finat_element

        dim = self.mesh.facet_dimension()

        if method == "topological":
            boundary_dofs = el.entity_closure_dofs()[dim]
        elif method == "geometric":
            # This function is only called on extruded meshes when
            # asking for the nodes that live on the "vertical"
            # exterior facets.
            boundary_dofs = entity_support_dofs(el, dim)

        nodes_per_facet = \
            len(boundary_dofs[0])

        # HACK ALERT
        # The facet set does not have a halo associated with it, since
        # we only construct halos for DoF sets.  Fortunately, this
        # loop is direct and we already have all the correct
        # information available locally.  So We fake a set of the
        # correct size and carry out a direct loop
        facet_set = op2.Set(self.mesh.exterior_facets.set.total_size,
                            comm=self.mesh.comm)

        fs_dat = op2.Dat(
            facet_set**el.space_dimension(),
            data=V.exterior_facet_node_map().values_with_halo.view())

        facet_dat = op2.Dat(facet_set**nodes_per_facet, dtype=IntType)

        # Ensure these come out in sorted order.
        local_facet_nodes = numpy.array(
            [boundary_dofs[e] for e in sorted(boundary_dofs.keys())])

        # Helper function to turn the inner index of an array into c
        # array literals.
        c_array = lambda xs: "{" + ", ".join(map(str, xs)) + "}"

        # AST for: l_nodes[facet[0]][n]
        rank_ast = ast.Symbol("l_nodes",
                              rank=(ast.Symbol("facet", rank=(0, )), "n"))

        body = ast.Block([
            ast.Decl("int",
                     ast.Symbol("l_nodes",
                                (len(el.cell.topology[dim]), nodes_per_facet)),
                     init=ast.ArrayInit(
                         c_array(map(c_array, local_facet_nodes))),
                     qualifiers=["const"]),
            ast.For(
                ast.Decl("int", "n", 0), ast.Less("n", nodes_per_facet),
                ast.Incr("n", 1),
                ast.Assign(ast.Symbol("facet_nodes", ("n", )),
                           ast.Symbol("cell_nodes", (rank_ast, ))))
        ])

        kernel = op2.Kernel(
            ast.FunDecl("void", "create_bc_node_map", [
                ast.Decl("%s*" % as_cstr(fs_dat.dtype), "cell_nodes"),
                ast.Decl("%s*" % as_cstr(facet_dat.dtype), "facet_nodes"),
                ast.Decl("unsigned int*", "facet")
            ], body), "create_bc_node_map")

        local_facet_dat = op2.Dat(
            facet_set**self.mesh.exterior_facets._rank,
            self.mesh.exterior_facets.local_facet_dat.data_ro_with_halos,
            dtype=numpy.uintc)
        op2.par_loop(kernel, facet_set, fs_dat(op2.READ), facet_dat(op2.WRITE),
                     local_facet_dat(op2.READ))

        if self.extruded:
            offset = self.offset[boundary_dofs[0]]
        else:
            offset = None
        val = op2.Map(facet_set,
                      self.node_set,
                      nodes_per_facet,
                      facet_dat.data_ro_with_halos,
                      name="exterior_facet_boundary_node",
                      offset=offset)
        self.map_caches["boundary_node"][method] = val
        return val
Пример #30
0
def auxiliary_temporaries(builder, declared_temps):
    """This function generates auxiliary information regarding special
    handling of expressions that require creating additional temporaries.

    :arg builder: a :class:`KernelBuilder` object that contains all the
                  necessary temporary and expression information.
    :arg declared_temps: a `dict` of temporaries that have already been
                         declared and assigned values. This will be
                         updated in this method and referenced later
                         in the compiler.
    Returns: a list of auxiliary statements are returned that contain temporary
             declarations and any code-blocks needed to evaluate the
             expression.
    """
    aux_statements = []
    for exp in builder.aux_exprs:
        if isinstance(exp, Inverse):
            if builder._ref_counts[exp] > 1:
                # Get the temporary for the particular expression
                result = metaphrase_slate_to_cpp(exp, declared_temps)

                # Now we use the generated result and assign the value to the
                # corresponding temporary.
                temp = ast.Symbol("auxT%d" % len(declared_temps))
                shape = exp.shape
                aux_statements.append(
                    ast.Decl(eigen_matrixbase_type(shape), temp))
                aux_statements.append(ast.FlatBlock("%s.setZero();\n" % temp))
                aux_statements.append(ast.Assign(temp, result))

                # Update declared temps
                declared_temps[exp] = temp

        elif isinstance(exp, Action):
            # Action computations are relatively inexpensive, so
            # we don't waste memory space on creating temps for
            # these expressions. However, we must create a temporary
            # for the actee coefficient (if we haven't already).
            actee, = exp.actee
            if actee not in declared_temps:
                # Declare a temporary for the coefficient
                V = actee.function_space()
                shape_array = [(Vi.finat_element.space_dimension(),
                                np.prod(Vi.shape)) for Vi in V.split()]
                ctemp = ast.Symbol("auxT%d" % len(declared_temps))
                shape = sum(n * d for (n, d) in shape_array)
                typ = eigen_matrixbase_type(shape=(shape, ))
                aux_statements.append(ast.Decl(typ, ctemp))
                aux_statements.append(ast.FlatBlock("%s.setZero();\n" % ctemp))

                # Now we populate the temporary with the coefficient
                # information and insert in the right place.
                offset = 0
                for i, shp in enumerate(shape_array):
                    node_extent, dof_extent = shp
                    # Now we unpack the function and insert its entries into a
                    # 1D vector temporary
                    isym = ast.Symbol("i1")
                    jsym = ast.Symbol("j1")
                    tensor_index = ast.Sum(
                        offset, ast.Sum(ast.Prod(dof_extent, isym), jsym))

                    # Inner-loop running over dof_extent
                    coeff_sym = ast.Symbol(builder.coefficient(actee)[i],
                                           rank=(isym, jsym))
                    coeff_temp = ast.Symbol(ctemp, rank=(tensor_index, ))
                    inner_loop = ast.For(
                        ast.Decl("unsigned int", jsym, init=0),
                        ast.Less(jsym, dof_extent), ast.Incr(jsym, 1),
                        ast.Assign(coeff_temp, coeff_sym))
                    # Outer-loop running over node_extent
                    loop = ast.For(ast.Decl("unsigned int", isym, init=0),
                                   ast.Less(isym, node_extent),
                                   ast.Incr(isym, 1), inner_loop)

                    aux_statements.append(loop)
                    offset += node_extent * dof_extent

                # Update declared temporaries with the coefficient
                declared_temps[actee] = ctemp
        else:
            raise NotImplementedError(
                "Auxiliary expr type %s not currently implemented." %
                type(exp))

    return aux_statements