def test_simulation_of_discrimination_game(self):

        # Network construction.
        agents = {}

        for _ in range(10):
            agent = SteelsAgent()
            agent.set_fitness("DG", StandardFitness())
            agents[agent.get_id()] = agent

        topology = generate_topology("clique", agents_names=agents.keys())

        changes = {1: "clique"}

        network = Network(agents, {"clique": topology}, changes)

        # Interaction construction.
        interactions = BehaviorSwitcher({"DG": DiscriminationGame()}, {1: "DG"})

        # Environment construction.
        irises = datasets.load_iris()
        environment = Environment(irises.data, irises.target)
        environments = BehaviorSwitcher({"global": environment}, {1: "global"})

        # Results construction.
        result = StandardResult(100)

        # Condition construction.
        condition = IterationCondition(1000)

        # Simulation construction.
        self.simulation = Simulation(network, interactions, environments, result, condition)
Пример #2
0
    def fit(self, x, y):
        """
        Fit the steels classifier according to the given training data.

        :param list x: samples.
        :param list y: samples' classes.
        """

        environment = Environment(x, y)

        agents = {}

        if self.classifiers is None:
            for _ in range(15):
                agent = SteelsClassificationAgent(alpha=self.alpha)
                agents[agent.id] = agent
        else:
            for classifier in self.classifiers:
                agent = SteelsClassificationAgent(classifier=classifier, alpha=self.alpha)
                agents[agent.id] = agent

        for agent in agents.values():
            agent.set_fitness("DG", CurrentFitness())
            agent.set_fitness("GG", CurrentFitness())

        network = Network(agents, {1: generate_topology(self.topology, agents_names=agents.keys())})

        self.simulation = Simulation(
            network, self.interactions, BehaviorSwitcher(environment), SteelsClassifierResults(), self.condition
        )

        self.result = self.simulation.run()
Пример #3
0
    def test_flu_game(self):
        """
        Flu game simulates flu expanding through social network.
        """

        # Network construction.
        agents = {}

        for _ in range(100):
            agent = Agent()
            agent.set_fitness("infected", InfectedFitness())
            agents[agent.get_id()] = agent

        for agent in agents:
            agents[agent].update_fitness_measure("infected", True)
            break

        topology = generate_topology("clique", agents_names=agents.keys())

        changes = {1: "clique"}

        network = Network(agents, {"clique": topology}, changes)

        # Interaction construction.
        interactions = BehaviorSwitcher({
            "infection": InfectInteraction()
        }, {1: "infection"})

        # Environment construction.
        environment = BehaviorSwitcher({}, {})

        # Results construction.
        result = StandardResult(1)

        # Condition construction.
        condition = AllInfected()

        # Simulation construction.
        self.simulation = Simulation(network, interactions, environment,
                                     result, condition)

        simulation_result = self.simulation.run()
Пример #4
0
    def test_guessing_game():
        agents = {}

        for _ in range(10):
            the_agent = SteelsClassificationAgent()
            the_agent.set_fitness("DG", fitness.StandardFitness())
            the_agent.set_fitness("GG", fitness.StandardFitness())
            agents[the_agent.get_id] = the_agent

        topology = generate_topology("clique", agents_names=agents.keys())

        complete_network = network.Network(agents, {"g": topology})

        iris = datasets.load_iris()
        the_environment = environment.Environment(iris.data, iris.target)

        sim = simulation.Simulation(complete_network, BehaviorSwitcher({"a": GuessingGame()}),
                                    BehaviorSwitcher({"a": the_environment}), result.StandardResult(),
                                    condition.IterationCondition(3200))

        sim.run()