def test_ml(self): """exercise the ML tree estimation""" from numpy.testing import assert_allclose aln = load_aligned_seqs(os.path.join(data_path, "brca1.fasta"), moltype="dna") aln = aln.take_seqs(["Human", "Mouse", "Rat", "Dog"]) aln = aln.omit_gap_pos(allowed_gap_frac=0) model = get_model("JC69") lnL, tree = ML(model, aln).trex(a=3, k=1, show_progress=False) assert_allclose(lnL, -8882.217502905267) self.assertTrue(tree.same_topology(make_tree("(Mouse,Rat,(Human,Dog));")))
def TreeAlign( model, seqs, tree=None, indel_rate=0.01, indel_length=0.01, ui=None, ests_from_pairwise=True, param_vals=None, ): """Returns a multiple alignment and tree. Uses the provided substitution model and a tree for determining the progressive order. If a tree is not provided a Neighbour Joining tree is constructed from pairwise distances estimated from pairwise aligning the sequences. If running in parallel, only the distance estimation is parallelised and only the master CPU returns the alignment and tree, other CPU's return None, None. Parameters ---------- model a substitution model or the name of one, see available_models() seqs a sequence collection indel_rate, indel_length parameters for the progressive pair-HMM ests_from_pairwise if no tree provided and True, the median value of the substitution model parameters are used param_vals named key, value pairs for model parameters. These override ests_from_pairwise. """ from cogent3 import get_model _exclude_params = ["mprobs", "rate", "bin_switch"] param_vals = dict(param_vals) if param_vals else {} seq_names = list(seqs.keys()) if isinstance(seqs, dict) else seqs.names two_seqs = len(seq_names) == 2 model = get_model(model) if tree: tip_names = tree.get_tip_names() tip_names.sort() seq_names.sort() assert ( tip_names == seq_names ), "names don't match between seqs and tree: tree=%s; seqs=%s" % ( tip_names, seq_names, ) ests_from_pairwise = False elif two_seqs: tree = make_tree(tip_names=seqs.names) ests_from_pairwise = False else: if ests_from_pairwise: est_params = [ param for param in model.get_param_list() if param not in _exclude_params ] else: est_params = None dcalc = EstimateDistances(seqs, model, do_pair_align=True, est_params=est_params) dcalc.run() dists = dcalc.get_pairwise_distances().to_dict() tree = NJ.nj(dists) LF = model.make_likelihood_function(tree.bifurcating(name_unnamed=True), aligned=False) if ests_from_pairwise and not param_vals: # we use the median to avoid the influence of outlier pairs param_vals = {} for param in est_params: numbers = dcalc.get_param_values(param) param_vals[param] = numbers.median ui.display("Doing %s alignment" % ["progressive", "pairwise"][two_seqs]) with LF.updates_postponed(): for param, val in list(param_vals.items()): LF.set_param_rule(param, value=val, is_constant=True) LF.set_param_rule("indel_rate", value=indel_rate, is_constant=True) LF.set_param_rule("indel_length", value=indel_length, is_constant=True) LF.set_sequences(seqs) lnL = LF.get_log_likelihood() edge = lnL.edge align = edge.get_viterbi_path().get_alignment() align = align.to_moltype(model.moltype) param_vals.update( dict( indel_length=indel_length, indel_rate=indel_rate, guide_tree=tree.get_newick(with_distances=True), model=model.name, lnL=lnL, )) align.info["align_params"] = param_vals return align, tree