def enjoy_env_sess(sess): should_render = True should_eval = Config.TRAIN_EVAL or Config.TEST_EVAL rep_count = Config.REP if should_eval: env = utils.make_general_env(Config.NUM_EVAL) should_render = False else: env = utils.make_general_env(1) env = wrappers.add_final_wrappers(env) if should_render: from gym.envs.classic_control import rendering nenvs = env.num_envs agent = create_act_model(sess, env, nenvs) sess.run(tf.global_variables_initializer()) loaded_params = utils.load_params_for_scope(sess, 'model') if not loaded_params: print('NO SAVED PARAMS LOADED') obs = env.reset() t_step = 0 if should_render: viewer = rendering.SimpleImageViewer() should_render_obs = not Config.IS_HIGH_RES def maybe_render(info=None): if should_render and not should_render_obs: env.render() maybe_render() scores = np.array([0] * nenvs) score_counts = np.array([0] * nenvs) curr_rews = np.zeros((nenvs, 3)) def should_continue(): if should_eval: return np.sum(score_counts) < rep_count * nenvs return True state = agent.initial_state done = np.zeros(nenvs) while should_continue(): action, values, state, _ = agent.step(obs, state, done) obs, rew, done, info = env.step(action) if should_render and should_render_obs: if np.shape(obs)[-1] % 3 == 0: ob_frame = obs[0, :, :, -3:] else: ob_frame = obs[0, :, :, -1] ob_frame = np.stack([ob_frame] * 3, axis=2) viewer.imshow(ob_frame) curr_rews[:, 0] += rew for i, d in enumerate(done): if d: if score_counts[i] < rep_count: score_counts[i] += 1 if 'episode' in info[i]: scores[i] += info[i].get('episode')['r'] if t_step % 100 == 0: mpi_print('t', t_step, values[0], done[0], rew[0], curr_rews[0], np.shape(obs)) maybe_render(info[0]) t_step += 1 if should_render: time.sleep(.02) if done[0]: if should_render: mpi_print('ep_rew', curr_rews) curr_rews[:] = 0 result = 0 if should_eval: mean_score = np.mean(scores) / rep_count max_idx = np.argmax(scores) mpi_print('scores', scores / rep_count) print('mean_score', mean_score) mpi_print('max idx', max_idx) mpi_mean_score = utils.mpi_average([mean_score]) mpi_print('mpi_mean', mpi_mean_score) result = mean_score return result
def test(sess, load_path, env, should_render=False, rep_count=Config.REP): rank = MPI.COMM_WORLD.Get_rank() size = MPI.COMM_WORLD.Get_size() should_eval = Config.TRAIN_EVAL or Config.TEST_EVAL if should_eval: #env = utils.make_general_env(Config.NUM_EVAL) should_render = False else: env = utils.make_general_env(1) env = wrappers.add_final_wrappers(env) if should_render: from gym.envs.classic_control import rendering nenvs = env.num_envs model = load_model(sess, filename) agent = create_act_model(sess, env, nenvs) sess.run(tf.global_variables_initializer()) loaded_params = utils.load_params_for_scope(sess, 'model') if not loaded_params: print('NO SAVED PARAMS LOADED') obs = env.reset() t_step = 0 if should_render: viewer = rendering.SimpleImageViewer() should_render_obs = not Config.IS_HIGH_RES def maybe_render(info=None): if should_render and not should_render_obs: env.render() maybe_render() scores = np.array([0] * nenvs) score_counts = np.array([0] * nenvs) curr_rews = np.zeros((nenvs, 3)) def should_continue(): if should_eval: return np.sum(score_counts) < rep_count * nenvs return True state = agent.initial_state done = np.zeros(nenvs) while should_continue(): action, values, state, _ = agent.step(obs, state, done) obs, rew, done, info = env.step(action) if should_render and should_render_obs: if np.shape(obs)[-1] % 3 == 0: ob_frame = obs[0, :, :, -3:] else: ob_frame = obs[0, :, :, -1] ob_frame = np.stack([ob_frame] * 3, axis=2) viewer.imshow(ob_frame) curr_rews[:, 0] += rew for i, d in enumerate(done): if d: if score_counts[i] < rep_count: score_counts[i] += 1 if 'episode' in info[i]: scores[i] += info[i].get('episode')['r'] if t_step % 100 == 0: mpi_print('t', t_step, values[0], done[0], rew[0], curr_rews[0], np.shape(obs)) maybe_render(info[0]) t_step += 1 if should_render: time.sleep(.02) if done[0]: if should_render: mpi_print('ep_rew', curr_rews) curr_rews[:] = 0 result = { 'steps_elapsed': steps_elapsed, } if should_eval: testset_size = rep_count * nenvs mean_score = np.sum(scores) / testset_size succ_rate = np.sum(scores == 10.0) / testset_size max_idx = np.argmax(scores) mpi_print('max idx', max_idx) mpi_print('steps_elapsed', steps_elapsed) if size > 1: mean_score = utils.mpi_average([mean_score]) mpi_print('mpi_mean', mpi_mean_score) wandb.log({'Test_Rew_mean': mean_score, 'Test_Succ_rate': succ_rate}) result['scores'] = scores result['testset_size'] = testset_size result['test_rew_mean'] = mean_score result['test_succ_rate'] = succ_rate return result
def enjoy_env_sess(sess, checkpoint, overlap): #base_name = str(8*checkpoint) + 'M' #load_file = setup_utils.restore_file(Config.RESTORE_ID,base_name=base_name) should_eval = True mpi_print('test levels seed', Config.SET_SEED) mpi_print('test levels ', Config.NUM_LEVELS) rep_count = 50 env = utils.make_general_env(20) env = wrappers.add_final_wrappers(env) nenvs = env.num_envs sess.run(tf.global_variables_initializer()) args_now = Config.get_args_dict() #args_run = utils.load_args() agent = create_act_model(sess, env, nenvs) # load name is specified by config.RESTORE_ID adn return True/False if checkpoint != 32: base_name = str(8 * checkpoint) + 'M' elif checkpoint == 0: mean_score = 0.0 succ_rate = 0.0 wandb.log({ 'Rew_mean': mean_score, 'Succ_rate': succ_rate, 'Step_elapsed': steps_elapsed }) return mean_score, succ_rate else: base_name = None sess.run(tf.global_variables_initializer()) # env init here load_file = setup_utils.restore_file(Config.RESTORE_ID, overlap_config=overlap, base_name=base_name) is_loaded = utils.load_params_for_scope(sess, 'model') if not is_loaded: mpi_print('NO SAVED PARAMS LOADED') return mean_score, succ_rate obs = env.reset() t_step = 0 scores = np.zeros((nenvs, rep_count)) eplens = np.zeros((nenvs, rep_count)) #scores = np.array([0] * nenvs) score_counts = np.array([0] * nenvs) # curr_rews = np.zeros((nenvs, 3)) def should_continue(): if should_eval: return np.sum(score_counts) < rep_count * nenvs return True state = agent.initial_state done = np.zeros(nenvs) def rollout(obs, state, done): """rollout for rep * nenv times and return scores""" t = 0 count = 0 rews = np.zeros((nenvs, rep_count)) while should_continue(): action, values, state, _ = agent.step(obs, state, done) obs, rew, done, info = env.step(action) rews[:, count] += rew t += 1 for i, d in enumerate(done): if d: eplens[i][count] = t if score_counts[i] < rep_count: score_counts[i] += 1 count = score_counts[i] - 1 # aux score if 'episode' in info[i]: scores[i][count] = info[i].get('episode')['r'] return scores, rews, eplens if is_loaded: mpi_print(load_file) scores, rews, eplens = rollout(obs, state, done) size = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() if size == 1: if rank == 0: testset_size = rep_count * nenvs utils.save_pickle(scores, Config.LOGDIR + 'scores') mean_score = np.sum(scores) / testset_size succ_rate = np.sum(scores == 10.0) / testset_size mpi_print('cpus ', size) mpi_print('testset size', testset_size) # NUM_LEVELS = 0 means unbounded set so the set size is rep_counts * nenvs # each one has a new seed(maybe counted) # mpi_print('score detail',scores.flatten()) mpi_print('succ_rate', succ_rate) steps_elapsed = checkpoint * 8000000 mpi_print('steps_elapsed:', steps_elapsed) mpi_print('mean score', mean_score) wandb.log({ 'Rew_mean': mean_score, 'Succ_rate': succ_rate, 'Step_elapsed': steps_elapsed }) #mpi_print('mean score of each env',[np.mean(s) for s in scores]) else: testset_size = rep_count * nenvs succ = np.sum(scores=10.0) / testset_size succ_rate = utils.mpi_average([succ]) mean_score_tmp = np.sum(scores) / testset_size mean_score = utils.mpi_average([mean_score_tmp]) if rank == 0: mpi_print('testset size', rep_count * nenvs * size) mpi_print('load file name', load_file) mpi_print('testset size', testset_size) # NUM_LEVELS = 0 means unbounded set so the set size is rep_counts * nenvs # each one has a new seed(maybe counted) # mpi_print('score detail',scores.flatten()) mpi_print('succ_rate', succ_rate) mpi_print('mean score', mean_score) wandb.log({'Rew_mean': mean_score, 'Succ_rate': succ_rate}) return mean_score, succ_rate