Пример #1
0
  def test_empirical_ensemble_multi_out_dict(self):
    inp = tf.keras.Input(shape=(10,))
    x = tf.keras.layers.Dense(10, activation="relu")(inp)
    out1 = tf.keras.layers.Dense(10, name="a")(x)
    out2 = tf.keras.layers.Dense(10, name="b")(x)
    out3 = tf.keras.layers.Dense(10, name="nolabel")(x)
    # Use the tf.keras functional api with named outputs.
    model = tf.keras.models.Model(inp, [out1, out2, out3])

    orig_weights = model.get_weights()
    # Keras does not provide a good reinit function, just draw random weights:
    weights1 = [np.random.random(w.shape) for w in orig_weights]
    weights2 = [np.random.random(w.shape) for w in orig_weights]

    input_shape = (None, 10)
    ens = ensemble.EmpiricalEnsemble(model, input_shape, [weights1, weights2])
    self.assertLen(ens, 2, msg="Empirical ensemble len wrong.")

    y_true = np.random.choice(10, 20)
    x = np.random.normal(0, 1, (20, 10))
    dataset = tf.data.Dataset.from_tensor_slices((x, {
        "a": y_true,
        "b": y_true
    })).batch(4)

    stat_results = ens.evaluate_ensemble(dataset, ({
        "a": [stats.Accuracy()],
        "b": [stats.ClassificationLogProb(),
              stats.Accuracy()],
        "nolabel": [stats.ClassificationLogProb()],
    }))
    self.assertLen(
        stat_results, 3, msg="Number of returned statistic_list should be 2")
    self.assertLen(
        stat_results["a"], 1, msg="Number of returned statistics should be 1")
    self.assertEqual(
        stat_results["b"][0].shape, (len(x), 10),
        "Statistic result should have valid shape."
    )
    self.assertEqual(
        stat_results["nolabel"][0].shape, (len(x), 10),
        "Statistic result should have valid shape."
    )

    outputs = ens.predict_ensemble(dataset)
    self.assertLen(outputs, 3)
    for output in outputs:
      self.assertEqual(
          output.shape, (len(ens), len(x), 10),
          "Predicted output should have valid shape."
      )
Пример #2
0
  def test_empirical_ensemble(self):
    model = tf.keras.models.Sequential([
        tf.keras.layers.Dense(10, activation="relu"),
        tf.keras.layers.Dense(10)
    ])

    input_shape = (None, 10)
    model.build(input_shape=input_shape)

    orig_weights = model.get_weights()
    # Keras does not provide a good reinit function, just draw random weights:
    weights1 = [np.random.random(w.shape) for w in orig_weights]
    weights2 = [np.random.random(w.shape) for w in orig_weights]

    ens = ensemble.EmpiricalEnsemble(model, input_shape, [weights1, weights2])
    self.assertLen(ens, 2, msg="Empirical ensemble len wrong.")

    y_true = np.random.choice(10, 20)
    x = np.random.normal(0, 1, (20, 10))
    dataset = tf.data.Dataset.from_tensor_slices((x, y_true)).batch(4)
    stat_results = ens.evaluate_ensemble(dataset,
                                         [stats.ClassificationLogProb()])
    self.assertLen(
        stat_results,
        1,
        msg="Number of evaluation outputs differ from statistics count.")
    self.assertEqual(
        stat_results[0].shape, (len(x), 10),
        "Statistic result should have valid shape."
    )
    output = ens.predict_ensemble(dataset)
    self.assertEqual(
        output.shape, (len(ens), len(x), 10),
        "Output should have valid shape."
    )
    def test_classification_prob(self):
        cprob = stats.ClassificationLogProb()

        logits1 = tf.math.log([[0.3, 0.7], [0.6, 0.4]])
        logits2 = tf.math.log([[0.2, 0.8], [0.5, 0.5]])
        logits3 = tf.math.log([[0.4, 0.6], [0.4, 0.6]])

        cprob.reset()
        cprob.update(logits1)
        cprob.update(logits2)
        cprob.update(logits3)
        log_prob = cprob.result()

        self.assertAlmostEqual(math.log(0.3), float(log_prob[0, 0]), delta=TOL)
        self.assertAlmostEqual(math.log(0.7), float(log_prob[0, 1]), delta=TOL)
        self.assertAlmostEqual(math.log(0.5), float(log_prob[1, 0]), delta=TOL)
        self.assertAlmostEqual(math.log(0.5), float(log_prob[1, 1]), delta=TOL)
    def test_fresh_reservoir_ensemble(self):
        model = tf.keras.models.Sequential([
            tf.keras.layers.Dense(10, activation="relu"),
            tf.keras.layers.Dense(10)
        ])

        input_shape = (None, 10)
        model.build(input_shape=input_shape)
        orig_weights = model.get_weights()
        # Keras does not provide a good reinit function, just draw random weights:
        weights1 = [np.random.random(w.shape) for w in orig_weights]
        weights2 = [np.random.random(w.shape) for w in orig_weights]

        ens = ensemble.EmpiricalEnsemble(model, input_shape,
                                         [weights1, weights2])
        self.assertLen(ens, 2, msg="Empirical ensemble len wrong.")

        y_true = np.random.choice(10, 20)
        x = np.random.normal(0, 1, (20, 10))

        ens = ensemble.FreshReservoirEnsemble(model,
                                              input_shape,
                                              capacity=2,
                                              freshness=50)
        ens.append(weights1)
        ens.append(weights2)
        self.assertLen(ens, 1, msg="Fresh reservoir ensemble len wrong.")

        statistics = [stats.ClassificationLogProb()]
        ens_pred = ens.evaluate_ensemble(x, statistics)
        self.assertLen(
            statistics,
            len(ens_pred),
            msg="Number of prediction outputs differ from statistics count.")

        self.assertLen(
            x,
            int(ens_pred[0].shape[0]),
            msg="Ensemble prediction statistics output has wrong shape.")

        statistics = [stats.Accuracy(), stats.ClassificationCrossEntropy()]
        ens_eval = ens.evaluate_ensemble((x, y_true), statistics)
        self.assertLen(
            statistics,
            len(ens_eval),
            msg="Number of evaluation outputs differ from statistics count.")