Пример #1
0
plt.figure(figsize=(5, 4))

inputs = [
    #('vanilla_wang_landau',
    #   'data/s000/periodic-ww1.30-ff0.30-N500-vanilla_wang_landau-minE-movie/002000-lndos.dat'),
    ('samc-1e+06',
     'data/s000/periodic-ww1.50-ff0.17-N256-samc-100000-movie/000600-lndos.dat'
     ),
    #('sad3', 'data/s000/periodic-ww1.30-ff0.30-N500-sad3-movie/002000-lndos.dat'),
    #('sad3-test', 'data/s000/periodic-ww1.30-ff0.30-N500-sad3-test-movie/002000-lndos.dat')
]

for method, fname in inputs:
    print('plotting', method)
    e, lndos = readnew.e_lndos(fname)
    colors.plot(e, lndos, method=method)

emax = -34
emin = -2000
eminimportant = -915
eSmax = -509
Smin = -1500
plt.axvline(eminimportant, linestyle=':', color='tab:gray')
plt.axvline(eSmax, linestyle=':', color='tab:gray')
#plt.axvline(emin)
#plt.axvline(eSmax)
plt.ylabel('$S/k_B$')
plt.ylim(Smin, 0)
plt.xlim(emin, emax)
plt.xlabel('$E$')
colors.legend()
Пример #2
0
    print('only showing 1/%d of the frames' % skipby)
print('numframes', numframes)

for frame in range(1, numframes + 1):
    if frame % 25 == 0:
        print('working on frame %d/%d' % (frame, numframes))
    plt.cla()
    ax.plot(best_e, best_lndos, ':', color='0.5')

    for suffix_index in range(len(suffixes)):
        suffix = suffixes[suffix_index]
        basename = dataformat % (suffix, frame * skipby)

        try:
            e, lndos, ps, lndostm = readnew.e_lndos_ps_lndostm(basename)
            colors.plot(e, lndos, method=suffix)
            #if lndostm is not None and suffix[:2] != 'sa':
            #    colors.plot(e, lndostm, method=suffix+'-tm')
            datname = basename + '-lndos.dat'
            min_T = readnew.minT(datname)
            too_lo, too_hi = readnew.too_low_high_energy(datname)
            ax.axvline(-readnew.max_entropy_state(datname),
                       color='r',
                       linestyle=':')
            min_important_energy = int(readnew.min_important_energy(datname))
            ax.axvline(-min_important_energy, color='b', linestyle=':')
            if too_lo is not None and suffix[:3] == 'sad':
                ax.axvline(-too_lo, color='b', linestyle='--')
            if too_lo is not None and suffix[:3] == 'sad':
                ax.axvline(-too_hi, color='r', linestyle='--')
            # Uncomment the following to plot a line at the
Пример #3
0
        if system == 's000':
            N = filebase.split('-N')[-1]
            ff = filebase.split('-ff')[-1].split('-N')[0]
            ff = float(ff)
            # Get N directly from title.
            moves = iterations * float(N)
        if system == 'ising':
            N = filebase.split('N')[-1]
            moves = iterations * float(N)

        max_time = max(max_time, moves.max())

        if energy > 0:
            plt.figure('error-at-energy-iterations')
            colors.plot(moves, erroratenergy, method=method[1:])
            plt.title('Error at energy %g %s' % (energy, filebase))
            plt.xlabel('# moves')
            plt.ylabel('error')
            colors.legend()
            plt.savefig('figs/%s-error-energy-%g.pdf' % (tex_filebase, energy))

            plt.figure('round-trips-at-energy')
            colors.plot(moves, Nrt_at_energy, method=method[1:])
            plt.title('Round Trips at energy %g, %s' % (energy, filebase))
            plt.xlabel('# moves')
            plt.ylabel('Round Trips')
            colors.legend()
            plt.savefig('figs/%s-round-trips-%g.pdf' % (tex_filebase, energy))

            plt.figure('error-at-energy-round-trips')
Пример #4
0
for frame in range(1, numframes + 1):
    if frame % 25 == 0:
        print(('working on frame %d/%d' % (frame, numframes)))
    plt.cla()
    ax.plot(best_e, best_hist, ':', color='0.5')

    for suffix_index in range(len(suffixes)):
        suffix = suffixes[suffix_index]
        basename = dataformat % (suffix, frame * skipby)

        try:
            datname = basename + '-transitions.dat'
            #print(readnew.moves(datname))
            e, hist = readnew.e_hist(basename)
            colors.plot(e, hist, method=suffix)
        except (KeyboardInterrupt, SystemExit):
            raise
        except Exception as e:
            print(e)
            pass

    ax.set_xlabel(r'$E$')
    ax.set_ylim(1.1 * minhist, maxhist + 5)
    ax.set_xlim(mine, maxe)
    ax.set_ylabel(r'$\textrm{Histogram}$')
    colors.legend(loc='lower right')

    fname = '%s/frame%06d.png' % (moviedir, frame)
    plt.savefig(fname)
Пример #5
0
    print('only showing 1/%d of the frames' % skipby)
print('numframes', numframes)

for frame in range(1, numframes+1):
    if frame % 25 == 0:
        print('working on frame %d/%d' % (frame, numframes))
    plt.cla()
    ax.plot(best_e, best_lndos, ':', color='0.5')

    for suffix_index in range(len(suffixes)):
        suffix = suffixes[suffix_index]
        basename = dataformat % (suffix, frame*skipby)

        try:
            e, lndos, ps, lndostm = readnew.e_lndos_ps_lndostm(basename)
            colors.plot(e, lndos, method=suffix)
            #if lndostm is not None and suffix[:2] != 'sa':
            #    colors.plot(e, lndostm, method=suffix+'-tm')
            datname = basename+'-lndos.dat'
            min_T = readnew.minT(datname)
            too_lo, too_hi = readnew.too_low_high_energy(datname)
            ax.axvline(-readnew.max_entropy_state(datname), color='r', linestyle=':')
            min_important_energy = int(readnew.min_important_energy(datname))
            ax.axvline(-min_important_energy, color='b', linestyle=':')
            if too_lo is not None and suffix[:3] == 'sad':
              ax.axvline(-too_lo, color='b', linestyle='--')
            if too_lo is not None and suffix[:3] == 'sad':
              ax.axvline(-too_hi, color='r', linestyle='--')
            # Uncomment the following to plot a line at the
            # min_important_energy with slope determined by min_T
            # ax.plot(e, (e+min_important_energy)/min_T + lndos[min_important_energy], colors[suffix_index]+'--')
Пример #6
0
for frame in range(1, numframes+1):
    if frame % 25 == 0:
        print('working on frame %d/%d' % (frame, numframes))
    plt.cla()
    ax.plot(best_e, best_hist, ':', color='0.5')

    for suffix_index in range(len(suffixes)):
        suffix = suffixes[suffix_index]
        basename = dataformat % (suffix, frame*skipby)

        try:
            datname = basename+'-transitions.dat'
            #print(readnew.moves(datname))
            e, hist = readnew.e_hist(basename)
            colors.plot(e, hist, method=suffix)
        except (KeyboardInterrupt, SystemExit):
            raise
        except Exception as e:
            print(e)
            pass

    ax.set_xlabel(r'$E$')
    ax.set_ylim(1.1*minhist, maxhist+5)
    ax.set_xlim(mine, maxe)
    ax.set_ylabel(r'$\textrm{Histogram}$')
    colors.legend(loc='lower right')

    fname = '%s/frame%06d.png' % (moviedir, frame)
    plt.savefig(fname)
Пример #7
0
    print 'only showing 1/%d of the frames' % skipby
print 'numframes', numframes

for frame in xrange(numframes):
    if frame % 25 == 0:
        print 'working on frame %d/%d' % (frame, numframes)
    plt.cla()
    ax.plot(best_e, best_lndos, ':', color='0.5')

    for suffix_index in range(len(suffixes)):
        suffix = suffixes[suffix_index]
        basename = dataformat % (suffix, frame * skipby)

        try:
            e, lndos, lndostm = readandcompute.e_lndos_lndostm(basename)
            colors.plot(e, lndos, method=suffix)
            if lndostm is not None and suffix[:2] != 'sa':
                colors.plot(e, lndostm, method=suffix + '-tm')
            datname = basename + '-lndos.dat'
            min_T = readandcompute.minT(datname)
            ax.axvline(-readandcompute.max_entropy_state(datname),
                       color='r',
                       linestyle=':')
            min_important_energy = int(
                readandcompute.min_important_energy(datname))
            ax.axvline(-min_important_energy, color='b', linestyle=':')
            # Uncomment the following to plot a line at the
            # min_important_energy with slope determined by min_T
            # ax.plot(e, (e+min_important_energy)/min_T + lndos[min_important_energy], colors[suffix_index]+'--')
            # ax.axvline(-readandcompute.converged_state(datname), color=colors.color(suffix), linestyle=':')
            # Uncomment the following to plot the lnw along with the lndos
data = np.loadtxt(datadir + 'wide-cv.txt')
wideax.set_xlim(0, data[-1, 0])
wide_ymin = 89
wide_ymax = 190
wideax.set_ylim(wide_ymin, wide_ymax)
# colors.plot(data[:,0], data[:,1], method='bench', axes=wideax)

for method in files:
    fname = files[method][0.01]
    data = np.loadtxt(datadir + fname + '-cv.txt')
    widedata = np.loadtxt(datadir + fname + '-wide-cv.txt')
    if len(data) == 0:
        continue
    if 'sad' in method:
        colors.plot(data[:, 0],
                    data[:, 1],
                    method=r'SAD $\Delta E=0.01\epsilon$',
                    axes=zoomax)
        colors.plot(widedata[:, 0],
                    widedata[:, 1],
                    method=r'SAD $\Delta E=0.01\epsilon$',
                    axes=wideax)
        # fname = files[method][0.1]
        # if os.path.exists(datadir+fname+'-cv.txt'):
        #         data = np.loadtxt(datadir+fname+'-cv.txt')
        #         colors.plot(data[:,0], data[:,1], method=r'SAD $\Delta E=0.1\epsilon$', axes=zoomax)
        #         widedata = np.loadtxt(datadir+fname+'-wide-cv.txt')
        #         colors.plot(widedata[:,0], widedata[:,1], method=r'SAD $\Delta E=0.1\epsilon$', axes=wideax)
    else:
        colors.plot(data[:, 0], data[:, 1], method=method, axes=zoomax)
        colors.plot(widedata[:, 0], widedata[:, 1], method=method, axes=wideax)
for method in extra_files:
Пример #9
0
                # Formula to calculate N from title i.e. 100x10
                # and use floor to always round up.
                N = np.floor(0.25*0.20*float(NxN[0])*float(NxN[-1])*float(NxN[-1]))
                ff = 1.0 # FIXME
                moves = iterations * N
        if filebase.startswith('s000'):
                N = filebase.split('-N')[-1]
                ff = filebase.split('-ff')[-1].split('-N')[0]
                ff = float(ff)
                # Get N directly from title.
                moves = iterations * float(N)
        max_time = max(max_time, moves.max())

        if energy > 0:
                plt.figure('error-at-energy-iterations')
                colors.plot(moves, erroratenergy, method=method[1:])
                plt.title('Error at energy %g %s' % (energy,filebase))
                plt.xlabel('# moves')
                plt.ylabel('error')
                colors.legend()
                plt.savefig('figs/%s-error-energy-%g.pdf' % (tex_filebase, energy))

                plt.figure('round-trips-at-energy' )
                colors.plot(moves, Nrt_at_energy, method = method[1:])
                plt.title('Round Trips at energy %g, %s' % (energy,filebase))
                plt.xlabel('# moves')
                plt.ylabel('Round Trips')
                colors.legend()
                plt.savefig('figs/%s-round-trips-%g.pdf' % (tex_filebase, energy))

                plt.figure('error-at-energy-round-trips')
    matplotlib.use('Agg')
    print('true?')

cv_data = pd.read_csv('%s/N%s-heat-capacity.csv' % (file_dir, N),
                      delimiter='\t',
                      encoding='utf-8',
                      engine='python')

#cv_data['cvref'] = cv_data['cvref'].astype(float)
print(cv_data.head(10))

cv_headers = list(cv_data)[1:]
print(cv_headers)

# Begin plotting the heat capacity
plt.figure('heat capacity plot')
Temp = np.array(pd.to_numeric(cv_data['Temperature'], errors='coerce'))
for name in cv_headers:
    cv = pd.to_numeric(cv_data[name], errors='coerce')
    colors.plot(1 / Temp, cv / N**2, method=name)

colors.legend(loc='best')
plt.xlabel(r'$\beta / J$')
plt.ylabel(r'$c_V$ / $ k_B$')
plt.xlim(0.3, 0.6)
if N == 32:
    plt.ylim(0.3, 2.0)

plt.savefig('../ising/N%i-Cv.pdf' % N)

plt.show()
Пример #11
0
    print 'trying method', method
    for subdirectory in directory:
        try:
            basename = 'data/lv/%s%s-movie/%s' % (filebase, method, subdirectory)
            e, hist = readandcompute.e_and_total_init_histogram(basename)
            datname = basename + '-transitions.dat'
            #min_T = readandcompute.minT(datname)

            hist_max = np.amax(hist)
            hist_norm = hist/hist_max # each method is normalized to itself.

            plt.figure('Histogram evolution vs Energy')
            plt.ylabel('Histogram')
            plt.xlabel('Energy')

            plt.subplot(len(directory),1,i)
            colors.plot(e, hist_norm, method=method[1:])
            colors.legend()

            i = i + 1 # this is a hokey way to count through frames.
        except:
            continue

#plt.tight_layout(pad=2, w_pad=0.0, h_pad=0.0)
plt.suptitle('Maximum Entropy Error vs Iterations, %s' %filebase)
plt.show()




Пример #12
0
for method in methods:
    i = 1
    print('trying method', method)
    for subdirectory in directory:
        try:
            basename = 'data/lv/%s%s-movie/%s' % (filebase, method,
                                                  subdirectory)
            e, hist = readandcompute.e_and_total_init_histogram(basename)
            datname = basename + '-transitions.dat'
            #min_T = readandcompute.minT(datname)

            hist_max = np.amax(hist)
            hist_norm = hist / hist_max  # each method is normalized to itself.

            plt.figure('Histogram evolution vs Energy')
            plt.ylabel('Histogram')
            plt.xlabel('Energy')

            plt.subplot(len(directory), 1, i)
            colors.plot(e, hist_norm, method=method[1:])
            colors.legend()

            i = i + 1  # this is a hokey way to count through frames.
        except:
            continue

#plt.tight_layout(pad=2, w_pad=0.0, h_pad=0.0)
plt.suptitle('Maximum Entropy Error vs Iterations, %s' % filebase)
plt.show()
Пример #13
0
    print 'only showing 1/%d of the frames' % skipby
print 'numframes', numframes

for frame in xrange(numframes):
    if frame % 25 == 0:
        print 'working on frame %d/%d' % (frame, numframes)
    plt.cla()
    ax.plot(best_e, best_lndos, ':', color='0.5')

    for suffix_index in range(len(suffixes)):
        suffix = suffixes[suffix_index]
        basename = dataformat % (suffix, frame*skipby)

        try:
            e, lndos, lndostm = readandcompute.e_lndos_lndostm(basename)
            colors.plot(e, lndos, method=suffix)
            if lndostm is not None and suffix[:2] != 'sa':
                colors.plot(e, lndostm, method=suffix+'-tm')
            datname = basename+'-lndos.dat'
            min_T = readandcompute.minT(datname)
            ax.axvline(-readandcompute.max_entropy_state(datname), color='r', linestyle=':')
            min_important_energy = int(readandcompute.min_important_energy(datname))
            ax.axvline(-min_important_energy, color='b', linestyle=':')
            # Uncomment the following to plot a line at the
            # min_important_energy with slope determined by min_T
            # ax.plot(e, (e+min_important_energy)/min_T + lndos[min_important_energy], colors[suffix_index]+'--')
            # ax.axvline(-readandcompute.converged_state(datname), color=colors.color(suffix), linestyle=':')
            # Uncomment the following to plot the lnw along with the lndos
            # e, lnw = readandcompute.e_lnw(basename)
            # ax.plot(e, -lnw, colors[suffix_index]+':')
        except (KeyboardInterrupt, SystemExit):