Пример #1
0
def CAM16_to_XYZ(CAM16_specification,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Converts from *CAM16* specification to *CIE XYZ* tristimulus values.

    This is the *inverse* implementation.

    Parameters
    ----------
    CAM16_specification : CAM16_Specification
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions.
    discount_illuminant : bool, optional
        Discount the illuminant.

    Returns
    -------
    XYZ : ndarray
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM16_specification`` argument.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_specification.J`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.C`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.s`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.M`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    -   ``CAM16_specification`` can also be passed as a compatible argument
        to :func:`colour.utilities.as_namedtuple` definition.

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM16_Specification(J=41.731207905126638,
    ...                                     C=0.103355738709070,
    ...                                     h=217.067959767393010)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = as_namedtuple(CAM16_specification,
                                                CAM16_Specification)
    J = to_domain_100(J)
    C = to_domain_100(C) if C is not None else C
    h = to_domain_degrees(h)
    M = to_domain_100(M) if M is not None else M
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if C is None and M is not None:
        C = M / spow(F_L, 0.25)
    elif C is None:
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM16_specification" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_inverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_inverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_inverse(P_n, h))

    # Step 4
    # Computing post-adaptation non linear response compression matrix.
    RGB_a = post_adaptation_non_linear_response_compression_matrix(P_2, a, b)

    # Step 5
    # Applying inverse post-adaptation non linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_inverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = dot_vector(M_16_INVERSE, RGB)

    return from_range_100(XYZ)
Пример #2
0
def CAM16_to_XYZ(CAM16_specification,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Converts *CAM16* specification to *CIE XYZ* tristimulus values.

    This is the *reverse* implementation.

    Parameters
    ----------
    CAM16_specification : CAM16_Specification
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions.
    discount_illuminant : bool, optional
        Discount the illuminant.

    Returns
    -------
    XYZ : ndarray
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM16_specification`` argument.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    -   ``CAM16_specification`` can also be passed as a compatible argument
        to :func:`colour.utilities.as_namedtuple` definition.

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM16_Specification(J=41.731207905126638,
    ...                                     C=0.103355738709070,
    ...                                     h=217.067959767393010)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = as_namedtuple(CAM16_specification,
                                                CAM16_Specification)
    L_A = as_float_array(L_A)

    h = to_domain_degrees(h)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if C is None and M is not None:
        C = M / spow(F_L, 0.25)
    elif C is None:
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM16_specification" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_reverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_reverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_reverse(P_n, h))

    # Step 4
    # Computing post-adaptation non linear response compression matrix.
    RGB_a = post_adaptation_non_linear_response_compression_matrix(P_2, a, b)

    # Step 5
    # Applying reverse post-adaptation non linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_reverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = dot_vector(M_16_INVERSE, RGB)

    return from_range_100(XYZ)
Пример #3
0
def XYZ_to_CAM16(XYZ,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Computes the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    This is the *forward* implementation.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions induction factors.
    discount_illuminant : bool, optional
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    CAM16_Specification
        *CAM16* colour appearance model specification.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_specification.J`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.C`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.s`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.M`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = CAM16_VIEWING_CONDITIONS['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM16_Specification(J=41.7312079..., C=0.1033557..., h=217.0679597..., \
s=2.3450150..., Q=195.3717089..., M=0.1074367..., H=275.5949861..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = dot_vector(M_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM16_Specification(from_range_100(J), from_range_100(C),
                               from_range_degrees(h), from_range_100(s),
                               from_range_100(Q), from_range_100(M),
                               from_range_degrees(H), None)
Пример #4
0
def CAM16_to_XYZ(
    specification: CAM_Specification_CAM16,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: Union[
        InductionFactors_CIECAM02,
        InductionFactors_CAM16] = VIEWING_CONDITIONS_CAM16["Average"],
    discount_illuminant: Boolean = False,
) -> NDArray:
    """
    Convert from *CAM16* specification to *CIE XYZ* tristimulus values.

    Parameters
    ----------
    specification : CAM_Specification_CAM16
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions.
    discount_illuminant
        Discount the illuminant.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_CAM16`` argument.

    Notes
    -----
    +-------------------------------+-----------------------+---------------+
    | **Domain**                    | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_CAM16.J`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.C`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.h`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.s`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.Q`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.M`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.H`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``XYZ_w``                     | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [0, 100]              | [0, 1]        |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM_Specification_CAM16(J=41.731207905126638,
    ...                                         C=0.103355738709070,
    ...                                         h=217.067959767393010)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = astuple(specification)

    J = to_domain_100(J)
    C = to_domain_100(C)
    h = to_domain_degrees(h)
    M = to_domain_100(M)
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = vector_dot(MATRIX_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = viewing_condition_dependent_parameters(
        Y_b, Y_w, L_A)

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non-linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if has_only_nan(C) and not has_only_nan(M):
        C = M / spow(F_L, 0.25)
    elif has_only_nan(C):
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM_Specification_CAM16" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_inverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_inverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_inverse(P_n, h))

    # Step 4
    # Applying post-adaptation non-linear response compression matrix.
    RGB_a = matrix_post_adaptation_non_linear_response_compression(P_2, a, b)

    # Step 5
    # Applying inverse post-adaptation non-linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_inverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = vector_dot(MATRIX_INVERSE_16, RGB)

    return from_range_100(XYZ)
Пример #5
0
def XYZ_to_CAM16(XYZ,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Computes the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    This is the *forward* implementation.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions induction factors.
    discount_illuminant : bool, optional
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    CAM16_Specification
        *CAM16* colour appearance model specification.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_Specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_Specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = CAM16_VIEWING_CONDITIONS['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM16_Specification(J=41.7312079..., C=0.1033557..., h=217.0679597..., \
s=2.3450150..., Q=195.3717089..., M=0.1074367..., H=275.5949861..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = dot_vector(M_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM16_Specification(J, C, from_range_degrees(h), s, Q, M,
                               from_range_degrees(H), None)
Пример #6
0
def CAM16_to_XYZ(CAM16_specification,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Converts *CAM16* specification to *CIE XYZ* tristimulus values.

    This is the *reverse* implementation.

    Parameters
    ----------
    CAM16_specification : CAM16_Specification
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions.
    discount_illuminant : bool, optional
        Discount the illuminant.

    Returns
    -------
    XYZ : ndarray
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM16_specification`` argument.

    Warning
    -------
    The output range of that definition is non standard!

    Notes
    -----
    -   ``CAM16_specification`` can also be passed as a compatible argument
        :func:`colour.utilities.as_namedtuple` definition.
    -   Input *CIE XYZ_w* tristimulus values are in domain [0, 100].
    -   Output *CIE XYZ* tristimulus values are in range [0, 100].

    References
    ----------
    -   :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM16_Specification(J=41.718025051415616,
    ...                                     C=11.941344635245843,
    ...                                     h=210.38389558131118)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = as_namedtuple(CAM16_specification,
                                                CAM16_Specification)

    _X_w, Y_w, _Zw = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else 1)

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = D[..., np.newaxis] * XYZ_w / RGB_w + 1 - D[..., np.newaxis]
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if C is None and M is not None:
        C = M / F_L**0.25
    elif C is None:
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM16_specification" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_reverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_reverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_reverse(P_n, h))

    # Step 4
    # Computing post-adaptation non linear response compression matrix.
    RGB_a = post_adaptation_non_linear_response_compression_matrix(P_2, a, b)

    # Step 5
    # Applying reverse post-adaptation non linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_reverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = dot_vector(M_16_INVERSE, RGB)

    return XYZ
Пример #7
0
def XYZ_to_CAM16(
    XYZ: ArrayLike,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: Union[
        InductionFactors_CIECAM02,
        InductionFactors_CAM16] = VIEWING_CONDITIONS_CAM16["Average"],
    discount_illuminant: Boolean = False,
) -> CAM_Specification_CAM16:
    """
    Compute the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    Parameters
    ----------
    XYZ
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions induction factors.
    discount_illuminant
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    :class:`colour.CAM_Specification_CAM16`
        *CAM16* colour appearance model specification.

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``XYZ``    | [0, 100]              | [0, 1]        |
    +------------+-----------------------+---------------+
    | ``XYZ_w``  | [0, 100]              | [0, 1]        |
    +------------+-----------------------+---------------+

    +-------------------------------+-----------------------+---------------+
    | **Range**                     | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_CAM16.J`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.C`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.h`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.s`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.Q`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.M`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.H`` | [0, 400]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = VIEWING_CONDITIONS_CAM16['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM_Specification_CAM16(J=41.7312079..., C=0.1033557..., \
h=217.0679597..., s=2.3450150..., Q=195.3717089..., M=0.1074367..., \
H=275.5949861..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = vector_dot(MATRIX_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = viewing_condition_dependent_parameters(
        Y_b, Y_w, L_A)

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non-linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = vector_dot(MATRIX_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non-linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM_Specification_CAM16(
        as_float(from_range_100(J)),
        as_float(from_range_100(C)),
        as_float(from_range_degrees(h)),
        as_float(from_range_100(s)),
        as_float(from_range_100(Q)),
        as_float(from_range_100(M)),
        as_float(from_range_degrees(H, 400)),
        None,
    )
Пример #8
0
def XYZ_to_CAM16(XYZ,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Computes the *CAM16* colour appearance model correlates from given
    *CIE XYZ* tristimulus values.

    This is the *forward* implementation.

    Parameters
    ----------
    XYZ : array_like
        *CIE XYZ* tristimulus values of test sample / stimulus in domain
        [0, 100].
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white in domain [0, 100].
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions induction factors.
    discount_illuminant : bool, optional
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    CAM16_Specification
        *CAM16* colour appearance model specification.

    Warning
    -------
    The input domain of that definition is non standard!

    Notes
    -----
    -   Input *CIE XYZ* tristimulus values are in domain [0, 100].
    -   Input *CIE XYZ_w* tristimulus values are in domain [0, 100].

    References
    ----------
    -   :cite:`Li2017`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> surround = CAM16_VIEWING_CONDITIONS['Average']
    >>> XYZ_to_CAM16(XYZ, XYZ_w, L_A, Y_b, surround)  # doctest: +ELLIPSIS
    CAM16_Specification(J=41.7180250..., C=11.9413446..., h=210.3838955..., \
s=25.3564036..., Q=193.0617673..., M=12.4128523..., H=267.0983345..., HC=None)
    """

    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = np.asarray(L_A)
    Y_b = np.asarray(Y_b)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else 1)

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = D[..., np.newaxis] * XYZ_w / RGB_w + 1 - D[..., np.newaxis]
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB = dot_vector(M_16, XYZ)

    # Step 2
    RGB_c = D_RGB * RGB

    # Step 3
    # Applying forward post-adaptation non linear response compression.
    RGB_a = post_adaptation_non_linear_response_compression_forward(RGB_c, F_L)

    # Step 4
    # Converting to preliminary cartesian coordinates.
    a, b = tsplit(opponent_colour_dimensions_forward(RGB_a))

    # Computing the *hue* angle :math:`h`.
    h = hue_angle(a, b)

    # Step 5
    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)
    # TODO: Compute hue composition.

    # Step 6
    # Computing achromatic responses for the stimulus.
    A = achromatic_response_forward(RGB_a, N_bb)

    # Step 7
    # Computing the correlate of *Lightness* :math:`J`.
    J = lightness_correlate(A, A_w, surround.c, z)

    # Step 8
    # Computing the correlate of *brightness* :math:`Q`.
    Q = brightness_correlate(surround.c, J, A_w, F_L)

    # Step 9
    # Computing the correlate of *chroma* :math:`C`.
    C = chroma_correlate(J, n, surround.N_c, N_cb, e_t, a, b, RGB_a)

    # Computing the correlate of *colourfulness* :math:`M`.
    M = colourfulness_correlate(C, F_L)

    # Computing the correlate of *saturation* :math:`s`.
    s = saturation_correlate(M, Q)

    return CAM16_Specification(J, C, h, s, Q, M, H, None)
Пример #9
0
def ZCAM_to_XYZ(
    specification: CAM_Specification_ZCAM,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: InductionFactors_ZCAM = VIEWING_CONDITIONS_ZCAM["Average"],
    discount_illuminant: Boolean = False,
) -> NDArray:
    """
    Convert from *ZCAM* specification to *CIE XYZ* tristimulus values.

    Parameters
    ----------
    specification
         *ZCAM* colour appearance model specification.
         Correlate of *Lightness* :math:`J`, correlate of *chroma* :math:`C` or
         correlate of *colourfulness* :math:`M` and *hue* angle :math:`h` in
         degrees must be specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        Absolute *CIE XYZ* tristimulus values of the white under reference
        illuminant.
    L_A
        Test adapting field *luminance* :math:`L_A` in :math:`cd/m^2` such as
        :math:`L_A = L_w * Y_b / 100` (where :math:`L_w` is luminance of the
        reference white and :math:`Y_b` is the background luminance factor).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions induction factors.
    discount_illuminant
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_ZCAM`` argument.

    Warnings
    --------
    The underlying *SMPTE ST 2084:2014* transfer function is an absolute
    transfer function.

    Notes
    -----
    -   *Safdar, Hardeberg and Luo (2021)* does not specify how the chromatic
        adaptation to *CIE Standard Illuminant D65* in *Step 0* should be
        performed. A one-step *Von Kries* chromatic adaptation transform is not
        symetrical or transitive when a degree of adptation is involved.
        *Safdar, Hardeberg and Luo (2018)* uses *Zhai and Luo (2018)* two-steps
        chromatic adaptation transform, thus it seems sensible to adopt this
        transform for the *ZCAM* colour appearance model until more information
        is available. It is worth noting that a one-step *Von Kries* chromatic
        adaptation transform with support for degree of adaptation produces
        values closer to the supplemental document compared to the
        *Zhai and Luo (2018)* two-steps chromatic adaptation transform but then
        the *ZCAM* colour appearance model does not round-trip properly.
    -   *Step 4* of the inverse model uses a rounded exponent of 1.3514
        preventing the model to round-trip properly. Given that this
        implementation takes some liberties with respect to the chromatic
        adaptation transform to use, it was deemed appropriate to use an
        exponent value that enables the *ZCAM* colour appearance model to
        round-trip.
    -   The underlying *SMPTE ST 2084:2014* transfer function is an absolute
        transfer function, thus the domain and range values for the *Reference*
        and *1* scales are only indicative that the data is not affected by
        scale transformations.

    +-------------------------------+-----------------------+---------------+
    | **Domain**                    | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_ZCAM.J``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.C``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.h``  | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.s``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.Q``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.M``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.H``  | [0, 400]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.HC`` | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.V``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.K``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.H``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [UN]                  | [UN]          |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Safdar2018`, :cite:`Safdar2021`, :cite:`Zhai2018`

    Examples
    --------
    >>> specification = CAM_Specification_ZCAM(J=92.250443780723629,
    ...                                        C=3.0216926733329013,
    ...                                        h=196.32457375575581)
    >>> XYZ_w = np.array([256, 264, 202])
    >>> L_A = 264
    >>> Y_b = 100
    >>> surround = VIEWING_CONDITIONS_ZCAM['Average']
    >>> ZCAM_to_XYZ(specification, XYZ_w, L_A, Y_b, surround)
    ... # doctest: +ELLIPSIS
    array([ 185.,  206.,  163.])
    """

    J_z, C_z, h_z, _S_z, _Q_z, M_z, _H, _H_Z, _V_z, _K_z, _W_z = astuple(
        specification)

    J_z = to_domain_1(J_z)
    C_z = to_domain_1(C_z)
    h_z = to_domain_degrees(h_z)
    M_z = to_domain_1(M_z)

    XYZ_w = to_domain_1(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    F_s, F, c, N_c = surround

    # Step 0 (Forward) - Chromatic adaptation from reference illuminant to
    # "CIE Standard Illuminant D65" illuminant using "CAT02".
    # Computing degree of adaptation :math:`D`.
    D = (degree_of_adaptation(surround.F, L_A)
         if not discount_illuminant else ones(L_A.shape))

    # Step 1 (Forward) - Computing factors related with viewing conditions and
    # independent of the test stimulus.
    # Background factor :math:`F_b`
    F_b = np.sqrt(Y_b / Y_w)
    # Luminance level adaptation factor :math:`F_L`
    F_L = 0.171 * spow(L_A, 1 / 3) * (1 - np.exp(-48 / 9 * L_A))

    # Step 2 (Forward) - Computing achromatic response (:math:`I_{z,w}`),
    # redness-greenness (:math:`a_{z,w}`), and yellowness-blueness
    # (:math:`b_{z,w}`).
    with domain_range_scale("ignore"):
        I_z_w, _A_z_w, B_z_w = tsplit(
            XYZ_to_Izazbz(XYZ_w, method="Safdar 2021"))

    # Step 1 (Inverse) - Computing achromatic response (:math:`I_z`).
    Q_z_p = (1.6 * F_s) / F_b**0.12
    Q_z_m = F_s**2.2 * F_b**0.5 * spow(F_L, 0.2)
    Q_z_w = 2700 * spow(I_z_w, Q_z_p) * Q_z_m

    I_z_p = (F_b**0.12) / (1.6 * F_s)
    I_z_d = 2700 * 100 * Q_z_m

    I_z = spow((J_z * Q_z_w) / I_z_d, I_z_p)

    # Step 2 (Inverse) - Computing chroma :math:`C_z`.
    if has_only_nan(M_z) and not has_only_nan(C_z):
        M_z = (C_z * Q_z_w) / 100
    elif has_only_nan(M_z):
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM_Specification_ZCAM" argument!')

    # Step 3 (Inverse) - Computing hue angle :math:`h_z`
    # :math:`h_z` is currently required as an input.

    # Computing eccentricity factor :math:`e_z`.
    e_z = 1.015 + np.cos(np.radians(89.038 + h_z % 360))
    h_z_r = np.radians(h_z)

    # Step 4 (Inverse) - Computing redness-greenness (:math:`a_z`), and
    # yellowness-blueness (:math:`b_z`).
    # C_z_p_e = 1.3514
    C_z_p_e = 50 / 37
    C_z_p = spow(
        (M_z * spow(I_z_w, 0.78) * F_b**0.1) /
        (100 * e_z**0.068 * spow(F_L, 0.2)),
        C_z_p_e,
    )
    a_z = C_z_p * np.cos(h_z_r)
    b_z = C_z_p * np.sin(h_z_r)

    # Step 5 (Inverse) - Computing tristimulus values :math:`XYZ_{D65}`.
    with domain_range_scale("ignore"):
        XYZ_D65 = Izazbz_to_XYZ(tstack([I_z, a_z, b_z]), method="Safdar 2021")

    XYZ = chromatic_adaptation_Zhai2018(XYZ_D65,
                                        TVS_D65,
                                        XYZ_w,
                                        D,
                                        D,
                                        transform="CAT02")

    return from_range_1(XYZ)
Пример #10
0
def XYZ_to_ZCAM(
    XYZ: ArrayLike,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: InductionFactors_ZCAM = VIEWING_CONDITIONS_ZCAM["Average"],
    discount_illuminant: Boolean = False,
) -> CAM_Specification_ZCAM:
    """
    Compute the *ZCAM* colour appearance model correlates from given *CIE XYZ*
    tristimulus values.

    Parameters
    ----------
    XYZ
        Absolute *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w
        Absolute *CIE XYZ* tristimulus values of the white under reference
        illuminant.
    L_A
        Test adapting field *luminance* :math:`L_A` in :math:`cd/m^2` such as
        :math:`L_A = L_w * Y_b / 100` (where :math:`L_w` is luminance of the
        reference white and :math:`Y_b` is the background luminance factor).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 * L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions induction factors.
    discount_illuminant
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    :class:`colour.CAM_Specification_ZCAM`
       *ZCAM* colour appearance model specification.

    Warnings
    --------
    The underlying *SMPTE ST 2084:2014* transfer function is an absolute
    transfer function.

    Notes
    -----
    -   *Safdar, Hardeberg and Luo (2021)* does not specify how the chromatic
        adaptation to *CIE Standard Illuminant D65* in *Step 0* should be
        performed. A one-step *Von Kries* chromatic adaptation transform is not
        symmetrical or transitive when a degree of adaptation is involved.
        *Safdar, Hardeberg and Luo (2018)* uses *Zhai and Luo (2018)* two-steps
        chromatic adaptation transform, thus it seems sensible to adopt this
        transform for the *ZCAM* colour appearance model until more information
        is available. It is worth noting that a one-step *Von Kries* chromatic
        adaptation transform with support for degree of adaptation produces
        values closer to the supplemental document compared to the
        *Zhai and Luo (2018)* two-steps chromatic adaptation transform but then
        the *ZCAM* colour appearance model does not round-trip properly.
    -   The underlying *SMPTE ST 2084:2014* transfer function is an absolute
        transfer function, thus the domain and range values for the *Reference*
        and *1* scales are only indicative that the data is not affected by
        scale transformations.

    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``XYZ``    | [UN]                  | [UN]          |
    +------------+-----------------------+---------------+
    | ``XYZ_tw`` | [UN]                  | [UN]          |
    +------------+-----------------------+---------------+
    | ``XYZ_rw`` | [UN]                  | [UN]          |
    +------------+-----------------------+---------------+

    +-------------------------------+-----------------------+---------------+
    | **Range**                     | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_ZCAM.J``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.C``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.h``  | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.s``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.Q``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.M``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.H``  | [0, 400]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.HC`` | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.V``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.K``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.H``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Safdar2018`, :cite:`Safdar2021`, :cite:`Zhai2018`

    Examples
    --------
    >>> XYZ = np.array([185, 206, 163])
    >>> XYZ_w = np.array([256, 264, 202])
    >>> L_A = 264
    >>> Y_b = 100
    >>> surround = VIEWING_CONDITIONS_ZCAM['Average']
    >>> XYZ_to_ZCAM(XYZ, XYZ_w, L_A, Y_b, surround)
    ... # doctest: +ELLIPSIS
    CAM_Specification_ZCAM(J=92.2504437..., C=3.0216926..., h=196.3245737..., \
s=19.1319556..., Q=321.3408463..., M=10.5256217..., H=237.6114442..., \
HC=None, V=34.7006776..., K=25.8835968..., W=91.6821728...)
    """

    XYZ = to_domain_1(XYZ)
    XYZ_w = to_domain_1(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    F_s, _F, _c, _N_c = surround

    # Step 0 (Forward) - Chromatic adaptation from reference illuminant to
    # "CIE Standard Illuminant D65" illuminant using "CAT02".
    # Computing degree of adaptation :math:`D`.
    D = (degree_of_adaptation(surround.F, L_A)
         if not discount_illuminant else ones(L_A.shape))

    XYZ_D65 = chromatic_adaptation_Zhai2018(XYZ,
                                            XYZ_w,
                                            TVS_D65,
                                            D,
                                            D,
                                            transform="CAT02")

    # Step 1 (Forward) - Computing factors related with viewing conditions and
    # independent of the test stimulus.
    # Background factor :math:`F_b`
    F_b = np.sqrt(Y_b / Y_w)
    # Luminance level adaptation factor :math:`F_L`
    F_L = 0.171 * spow(L_A, 1 / 3) * (1 - np.exp(-48 / 9 * L_A))

    # Step 2 (Forward) - Computing achromatic response (:math:`I_z` and
    # :math:`I_{z,w}`), redness-greenness (:math:`a_z` and :math:`a_{z,w}`),
    # and yellowness-blueness (:math:`b_z`, :math:`b_{z,w}`).
    with domain_range_scale("ignore"):
        I_z, a_z, b_z = tsplit(XYZ_to_Izazbz(XYZ_D65, method="Safdar 2021"))
        I_z_w, _a_z_w, b_z_w = tsplit(
            XYZ_to_Izazbz(XYZ_w, method="Safdar 2021"))

    # Step 3 (Forward) - Computing hue angle :math:`h_z`
    h_z = hue_angle(a_z, b_z)

    # Step 4 (Forward) - Computing hue quadrature :math:`H`.
    H = hue_quadrature(h_z)

    # Computing eccentricity factor :math:`e_z`.
    e_z = 1.015 + np.cos(np.radians(89.038 + h_z % 360))

    # Step 5 (Forward) - Computing brightness :math:`Q_z`,
    # lightness :math:`J_z`, colourfulness :math`M_z`, and chroma :math:`C_z`
    Q_z_p = (1.6 * F_s) / F_b**0.12
    Q_z_m = F_s**2.2 * F_b**0.5 * spow(F_L, 0.2)
    Q_z = 2700 * spow(I_z, Q_z_p) * Q_z_m
    Q_z_w = 2700 * spow(I_z_w, Q_z_p) * Q_z_m

    J_z = 100 * (Q_z / Q_z_w)

    M_z = (100 * (a_z**2 + b_z**2)**0.37 *
           ((spow(e_z, 0.068) * spow(F_L, 0.2)) /
            (F_b**0.1 * spow(I_z_w, 0.78))))

    C_z = 100 * (M_z / Q_z_w)

    # Step 6 (Forward) - Computing saturation :math:`S_z`,
    # vividness :math:`V_z`, blackness :math:`K_z`, and whiteness :math:`W_z`.
    S_z = 100 * spow(F_L, 0.6) * np.sqrt(M_z / Q_z)

    V_z = np.sqrt((J_z - 58)**2 + 3.4 * C_z**2)

    K_z = 100 - 0.8 * np.sqrt(J_z**2 + 8 * C_z**2)

    W_z = 100 - np.sqrt((100 - J_z)**2 + C_z**2)

    return CAM_Specification_ZCAM(
        as_float(from_range_1(J_z)),
        as_float(from_range_1(C_z)),
        as_float(from_range_degrees(h_z)),
        as_float(from_range_1(S_z)),
        as_float(from_range_1(Q_z)),
        as_float(from_range_1(M_z)),
        as_float(from_range_degrees(H, 400)),
        None,
        as_float(from_range_1(V_z)),
        as_float(from_range_1(K_z)),
        as_float(from_range_1(W_z)),
    )
Пример #11
0
def Kim2009_to_XYZ(
    specification: CAM_Specification_Kim2009,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    media: MediaParameters_Kim2009 = MEDIA_PARAMETERS_KIM2009["CRT Displays"],
    surround: InductionFactors_Kim2009 = VIEWING_CONDITIONS_KIM2009["Average"],
    discount_illuminant: Boolean = False,
    n_c: Floating = 0.57,
) -> NDArray:
    """
    Convert from *Kim, Weyrich and Kautz (2009)* specification to *CIE XYZ*
    tristimulus values.

    Parameters
    ----------
    specification
         *Kim, Weyrich and Kautz (2009)* colour appearance model specification.
         Correlate of *Lightness* :math:`J`, correlate of *chroma* :math:`C` or
         correlate of *colourfulness* :math:`M` and *hue* angle :math:`h` in
         degrees must be specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    media
        Media parameters.
    surroundl
        Surround viewing conditions induction factors.
    discount_illuminant
        Discount the illuminant.
    n_c
        Cone response sigmoidal curve modulating factor :math:`n_c`.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_Kim2009`` argument.

    Notes
    -----
    +---------------------------------+-----------------------+---------------+
    | **Domain**                      | **Scale - Reference** | **Scale - 1** |
    +=================================+=======================+===============+
    | ``CAM_Specification_Kim2009.J`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.C`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.h`` | [0, 360]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.s`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.M`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.H`` | [0, 360]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``XYZ_w``                       | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [0, 100]              | [0, 1]        |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Kim2009`

    Examples
    --------
    >>> specification = CAM_Specification_Kim2009(J=28.861908975839647,
    ...                                           C=0.5592455924373706,
    ...                                           h=219.04806677662953)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> media = MEDIA_PARAMETERS_KIM2009['CRT Displays']
    >>> surround = VIEWING_CONDITIONS_KIM2009['Average']
    >>> Kim2009_to_XYZ(specification, XYZ_w, L_A, media, surround)
    ... # doctest: +ELLIPSIS
    array([ 19.0099995...,  19.9999999...,  21.7800000...])
    """

    J, C, h, _s, _Q, M, _H, _HC = astuple(specification)

    J = to_domain_100(J)
    C = to_domain_100(C)
    h = to_domain_degrees(h)
    M = to_domain_100(M)
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Converting *CIE XYZ* tristimulus values to *CMCCAT2000* transform
    # sharpened *RGB* values.
    RGB_w = vector_dot(CAT_CAT02, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (
        degree_of_adaptation(surround.F, L_A)
        if not discount_illuminant
        else ones(L_A.shape)
    )

    # Computing full chromatic adaptation.
    XYZ_wc = full_chromatic_adaptation_forward(RGB_w, RGB_w, Y_w, D)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    LMS_w = RGB_to_rgb(XYZ_wc)

    # n_q = 0.1308
    # J = Q / spow(Y_w, n_q)
    if has_only_nan(C) and not has_only_nan(M):
        a_m, b_m = 0.11, 0.61
        C = M / (a_m * np.log10(Y_w) + b_m)
    elif has_only_nan(C):
        raise ValueError(
            'Either "C" or "M" correlate must be defined in '
            'the "CAM_Specification_Kim2009" argument!'
        )

    # Cones absolute response.
    LMS_w_n_c = spow(LMS_w, n_c)
    L_A_n_c = spow(L_A, n_c)
    LMS_wp = LMS_w_n_c / (LMS_w_n_c + L_A_n_c)

    # Achromatic signal :math:`A_w`
    v_A = np.array([40, 20, 1])
    A_w = np.sum(v_A * LMS_wp, axis=-1) / 61

    # Perceived *Lightness* :math:`J_p`.
    J_p = (J / 100 - 1) / media.E + 1

    # Achromatic signal :math:`A`.
    a_j, b_j, n_j, o_j = 0.89, 0.24, 3.65, 0.65
    J_p_n_j = spow(J_p, n_j)
    A = A_w * ((a_j * J_p_n_j) / (J_p_n_j + spow(o_j, n_j)) + b_j)

    # Opponent signals :math:`a` and :math:`b`.
    a_k, n_k = 456.5, 0.62
    C_a_k_n_k = spow(C / a_k, 1 / n_k)
    hr = np.radians(h)
    a, b = np.cos(hr) * C_a_k_n_k, np.sin(hr) * C_a_k_n_k

    # Cones absolute response.
    M = np.array(
        [
            [1.0000, 0.3215, 0.2053],
            [1.0000, -0.6351, -0.1860],
            [1.0000, -0.1568, -4.4904],
        ]
    )
    LMS_p = vector_dot(M, tstack([A, a, b]))
    LMS = spow((-spow(L_A, n_c) * LMS_p) / (LMS_p - 1), 1 / n_c)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    RGB_c = rgb_to_RGB(LMS)

    # Applying inverse full chromatic adaptation.
    RGB = full_chromatic_adaptation_inverse(RGB_c, RGB_w, Y_w, D)

    XYZ = vector_dot(CAT_INVERSE_CAT02, RGB)

    return from_range_100(XYZ)
Пример #12
0
def XYZ_to_Kim2009(
    XYZ: ArrayLike,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    media: MediaParameters_Kim2009 = MEDIA_PARAMETERS_KIM2009["CRT Displays"],
    surround: InductionFactors_Kim2009 = VIEWING_CONDITIONS_KIM2009["Average"],
    discount_illuminant: Boolean = False,
    n_c: Floating = 0.57,
) -> CAM_Specification_Kim2009:
    """
    Compute the *Kim, Weyrich and Kautz (2009)* colour appearance model
    correlates from given *CIE XYZ* tristimulus values.

    Parameters
    ----------
    XYZ
        *CIE XYZ* tristimulus values of test sample / stimulus.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    media
        Media parameters.
    surround
        Surround viewing conditions induction factors.
    discount_illuminant
        Truth value indicating if the illuminant should be discounted.
    n_c
        Cone response sigmoidal curve modulating factor :math:`n_c`.

    Returns
    -------
    :class:`colour.CAM_Specification_Kim2009`
       *Kim, Weyrich and Kautz (2009)* colour appearance model specification.

    Notes
    -----
    +------------+-----------------------+---------------+
    | **Domain** | **Scale - Reference** | **Scale - 1** |
    +============+=======================+===============+
    | ``XYZ``    | [0, 100]              | [0, 1]        |
    +------------+-----------------------+---------------+
    | ``XYZ_w``  | [0, 100]              | [0, 1]        |
    +------------+-----------------------+---------------+

    +---------------------------------+-----------------------+---------------+
    | **Range**                       | **Scale - Reference** | **Scale - 1** |
    +=================================+=======================+===============+
    | ``CAM_Specification_Kim2009.J`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.C`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.h`` | [0, 360]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.s`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.M`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.H`` | [0, 400]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+

    References
    ----------
    :cite:`Kim2009`

    Examples
    --------
    >>> XYZ = np.array([19.01, 20.00, 21.78])
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> media = MEDIA_PARAMETERS_KIM2009['CRT Displays']
    >>> surround = VIEWING_CONDITIONS_KIM2009['Average']
    >>> XYZ_to_Kim2009(XYZ, XYZ_w, L_A, media, surround)
    ... # doctest: +ELLIPSIS
    CAM_Specification_Kim2009(J=28.8619089..., C=0.5592455..., \
h=219.0480667..., s=9.3837797..., Q=52.7138883..., M=0.4641738..., \
H=278.0602824..., HC=None)
    """

    XYZ = to_domain_100(XYZ)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)

    # Converting *CIE XYZ* tristimulus values to *CMCCAT2000* transform
    # sharpened *RGB* values.
    RGB = vector_dot(CAT_CAT02, XYZ)
    RGB_w = vector_dot(CAT_CAT02, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (
        degree_of_adaptation(surround.F, L_A)
        if not discount_illuminant
        else ones(L_A.shape)
    )

    # Computing full chromatic adaptation.
    XYZ_c = full_chromatic_adaptation_forward(RGB, RGB_w, Y_w, D)
    XYZ_wc = full_chromatic_adaptation_forward(RGB_w, RGB_w, Y_w, D)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    LMS = RGB_to_rgb(XYZ_c)
    LMS_w = RGB_to_rgb(XYZ_wc)

    # Cones absolute response.
    LMS_n_c = spow(LMS, n_c)
    LMS_w_n_c = spow(LMS_w, n_c)
    L_A_n_c = spow(L_A, n_c)
    LMS_p = LMS_n_c / (LMS_n_c + L_A_n_c)
    LMS_wp = LMS_w_n_c / (LMS_w_n_c + L_A_n_c)

    # Achromatic signal :math:`A` and :math:`A_w`.
    v_A = np.array([40, 20, 1])
    A = np.sum(v_A * LMS_p, axis=-1) / 61
    A_w = np.sum(v_A * LMS_wp, axis=-1) / 61

    # Perceived *Lightness* :math:`J_p`.
    a_j, b_j, o_j, n_j = 0.89, 0.24, 0.65, 3.65
    A_A_w = A / A_w
    J_p = spow(
        (-(A_A_w - b_j) * spow(o_j, n_j)) / (A_A_w - b_j - a_j), 1 / n_j
    )

    # Computing the media dependent *Lightness* :math:`J`.
    J = 100 * (media.E * (J_p - 1) + 1)

    # Computing the correlate of *brightness* :math:`Q`.
    n_q = 0.1308
    Q = J * spow(Y_w, n_q)

    # Opponent signals :math:`a` and :math:`b`.
    a = (1 / 11) * np.sum(np.array([11, -12, 1]) * LMS_p, axis=-1)
    b = (1 / 9) * np.sum(np.array([1, 1, -2]) * LMS_p, axis=-1)

    # Computing the correlate of *chroma* :math:`C`.
    a_k, n_k = 456.5, 0.62
    C = a_k * spow(np.sqrt(a**2 + b**2), n_k)

    # Computing the correlate of *colourfulness* :math:`M`.
    a_m, b_m = 0.11, 0.61
    M = C * (a_m * np.log10(Y_w) + b_m)

    # Computing the correlate of *saturation* :math:`s`.
    s = 100 * np.sqrt(M / Q)

    # Computing the *hue* angle :math:`h`.
    h = np.degrees(np.arctan2(b, a)) % 360

    # Computing hue :math:`h` quadrature :math:`H`.
    H = hue_quadrature(h)

    return CAM_Specification_Kim2009(
        as_float(from_range_100(J)),
        as_float(from_range_100(C)),
        as_float(from_range_degrees(h)),
        as_float(from_range_100(s)),
        as_float(from_range_100(Q)),
        as_float(from_range_100(M)),
        as_float(from_range_degrees(H, 400)),
        None,
    )