Пример #1
0
class CometWriter(LoggerWriter):
    def __init__(self, project_name, enable_log, cfg):
        from comet_ml import Experiment
        super().__init__(project_name, enable_log, cfg)
        self.exp = Experiment(api_key=cfg.comet_api_key,
                              project_name=project_name,
                              disabled=not enable_log)

    def log_params(self, args):
        self.exp.log_parameters(vars(args))

    def log_metric(self, name, value, step):
        self.exp.log_metric(name, value, step)

    def log_confusion_matrix(self, matrix, step):
        self.exp.log_confusion_matrix(
            matrix=matrix,
            step=step,
            file_name="confusion_matrix_{}".format(step))
Пример #2
0
def eval(
    model: LiSSModel,
    dataset: UnalignedDataset,
    exp: Experiment,
    total_iters: int = 0,
    nb_ims: int = 30,
):
    liss = model.opt.model == "liss"
    metrics = {}
    print(f"----------- Evaluation {total_iters} ----------")
    with torch.no_grad():
        data = {
            "translation": {
                "A": {
                    "rec": None,
                    "idt": None,
                    "real": None,
                    "fake": None
                },
                "B": {
                    "rec": None,
                    "idt": None,
                    "real": None,
                    "fake": None
                },
            }
        }
        force = set(["identity", "translation"])
        if liss:
            for t in model.tasks:
                tmp = {}
                if t.eval_visuals_pred or t.log_type == "acc":
                    tmp["pred"] = None
                if t.eval_visuals_target or t.log_type == "acc":
                    tmp["target"] = None
                data[t.key] = {domain: deepcopy(tmp) for domain in "AB"}

            force |= set(model.tasks.keys)

        losses = {
            k: []
            for k in dir(model) if k.startswith("loss_")
            and isinstance(getattr(model, k), torch.Tensor)
        }
        for i, b in enumerate(dataset):
            # print(f"\rEval batch {i}", end="")

            model.set_input(b)
            model.forward(force=force)
            model.backward_G(losses_only=True, force=force)

            for k in dir(model):
                if k.startswith("loss_") and isinstance(
                        getattr(model, k), torch.Tensor):
                    if k not in losses:
                        losses[k] = []
                    losses[k].append(getattr(model, k).detach().cpu().item())

            if liss:

                for t in model.tasks:
                    for domain in "AB":
                        for dtype in data[t.key][domain]:
                            if (t.log_type != "acc"
                                    and data[t.key][domain][dtype] is not None
                                    and
                                    len(data[t.key][domain][dtype]) >= nb_ims):
                                continue

                            v = model.get(
                                f"{domain}_{t.key}_{dtype}").detach().cpu()
                            if data[t.key][domain][dtype] is None:
                                data[t.key][domain][dtype] = v
                            else:
                                data[t.key][domain][dtype] = torch.cat(
                                    [data[t.key][domain][dtype], v],
                                    dim=0,
                                )

            # -------------------------
            # -----  Translation  -----
            # -------------------------
            if (data["translation"]["A"]["real"] is None
                    or len(data["translation"]["A"]["real"]) < nb_ims):
                for domain in "AB":
                    for dtype in ["real", "fake", "rec", "idt"]:
                        dom = domain
                        if dtype in {"fake", "idt"}:
                            dom = swap_domain(domain)
                        v = model.get(f"{dom}_{dtype}").detach().cpu()
                        if data["translation"][domain][dtype] is None:
                            data["translation"][domain][dtype] = v
                        else:
                            data["translation"][domain][dtype] = torch.cat(
                                [data["translation"][domain][dtype], v], dim=0)
                        # print(
                        #     f"{domain} {dtype} {len(data['translation'][domain][dtype])}"
                        # )

    for task in data:
        if task != "translation" and model.tasks[task].log_type != "vis":
            continue
        for domain in data[task]:
            for i, v in data[task][domain].items():
                data[task][domain][i] = torch.cat(list(v[:nb_ims].permute(
                    0, 2, 3, 1)),
                                                  axis=1)

    log_images = int(data["translation"]["A"]["real"].shape[1] /
                     data["translation"]["A"]["real"].shape[0])
    im_size = data["translation"]["A"]["real"].shape[0]

    ims = {"A": None, "B": None}

    data_keys = ["translation"]
    translation_keys = ["real", "fake", "rec", "idt"]
    data_keys += [task for task in data if task not in data_keys]

    for task in data_keys:
        if task != "translation" and model.tasks[task].log_type != "vis":
            continue
        for domain in "AB":
            im_types = (translation_keys if task == "translation" else list(
                data[task][domain].keys()))
            for im_type in im_types:
                v = data[task][domain][im_type].float()
                if task == "depth":
                    v = to_min1_1(v)
                    v = v.repeat((1, 1, 3))
                v = v + 1
                v = v / 2
                if ims[domain] is None:
                    ims[domain] = v
                else:
                    ims[domain] = torch.cat([ims[domain], v], dim=0)

    # ------------------------
    # -----  Comet Logs  -----
    # ------------------------
    for i in range(0, log_images, 5):
        k = i + 5
        exp.log_image(
            ims["A"][:, i * im_size:k * im_size, :].numpy(),
            "test_A_{}_{}_rfcidg".format(i * 5, (i + 1) * 5 - 1),
            step=total_iters,
        )
        exp.log_image(
            ims["B"][:, i * im_size:k * im_size, :].numpy(),
            "test_B_{}_{}_rfcidg".format(i * 5, (i + 1) * 5 - 1),
            step=total_iters,
        )
    if liss:
        test_losses = {
            "test_" + ln: np.mean(losses["loss_" + ln])
            for t in model.tasks for ln in t.loss_names
        }

        test_accs = {
            f"test_G_{domain}_{t.key}_acc":
            np.mean(data[t.key][domain]["pred"].max(-1)[1].numpy() == data[
                t.key][domain]["target"].numpy())
            for domain in "AB" for t in model.tasks if t.log_type == "acc"
        }

        if liss:
            exp.log_metrics(test_losses, step=total_iters)
            exp.log_metrics(test_accs, step=total_iters)

            for t in model.tasks:
                if t.log_type != "acc":
                    continue
                for domain in "AB":
                    target = data[t.key][domain]["target"].numpy()
                    pred = data[t.key][domain]["pred"].numpy()
                    exp.log_confusion_matrix(
                        get_one_hot(target, t.output_dim),
                        pred,
                        file_name=
                        f"confusion_{domain}_{t.key}_{total_iters}.json",
                        title=f"confusion_{domain}_{t.key}_{total_iters}.json",
                    )
            metrics = {k + "_loss": v for k, v in test_losses.items()}
            metrics.update(test_accs)
    print("----------- End Evaluation----------")
    return metrics
            # Log accuracy to Comet.ml
            experiment.log_metric("accuracy", correct / total, step=step)
            step += 1

            if (i + 1) % 100 == 0:
                print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f' %
                      (epoch + 1, hyper_params['num_epochs'], i + 1,
                       len(train_dataset) // hyper_params['batch_size'],
                       loss.data.item()))
        # At end of epoch:
        print("Computing confusion matrix and uploading samples...")
        confusion_matrix.compute_matrix(epoch_targets, epoch_predictions)
        experiment.log_confusion_matrix(
            matrix=confusion_matrix,
            title="Train Confusion Matrix, Epoch #%s" % (epoch + 1, ),
            file_name="train-confusion-matrix-%03d.json" % (epoch + 1),
        )

        print("Logging weights as histogram...")
        # Log model weights
        weights = []
        for name in rnn.named_parameters():
            if 'weight' in name[0]:
                weights.extend(name[1].detach().numpy().tolist())
        experiment.log_histogram_3d(weights, step=epoch + 1)

with experiment.test():
    # Test the Model
    correct = 0
    total = 0
Пример #4
0
            experiment.log_metrics(metrics)

            # Optionally save per-label recall, precision and F1
            # label_metrics = pd.DataFrame.from_dict(cls_report_dct, orient='index')
            # label_metrics_file = os.path.join(output_dir, experiment_name + "_label_metrics.csv")
            # label_metrics.to_csv(label_metrics_file)
            # experiment.log_asset(label_metrics_file)

            conf_matrix_fig, confusion_matrix = plot_confusion_matrix(
                true_labels, predicted_labels, labels)
            confusion_matrix_file = os.path.join(
                output_dir, experiment_name + "_confusion_matrix.png")
            conf_matrix_fig.savefig(confusion_matrix_file)
            experiment.log_image(confusion_matrix_file)
            experiment.log_confusion_matrix(
                matrix=confusion_matrix.tolist(),
                labels=labels[:len(confusion_matrix)])

            end_time = time.time()
            print("Testing took " + str(('%.3f' % (end_time - start_time))) +
                  " seconds for " + str(test_steps) + " steps")

    # Close the current session
    sess.close()
    tf.keras.backend.clear_session()

    # Log results to csv
    if training and testing:
        experiment_file = os.path.join(
            task_name, task_name + "_" + experiment_type + ".csv")
        save_experiment(experiment_file, experiment_params,
Пример #5
0
# Comet-ML log data
for i in history.epoch:
    experiment.log_metric("accuracy",
                          history.history['accuracy'][i],
                          epoch=i + 1)
    experiment.log_metric("loss", history.history['loss'][i], epoch=i + 1)

## Confusion matrix
y_test_hat = model.predict(X_test, batch_size=4)
y_test_hat = np.argmax(y_test_hat, axis=1)
y_test = np.argmax(y_test, axis=1)
conf_m = confusion_matrix(y_test, y_test_hat)

# Comet-ML log data
experiment.log_confusion_matrix(y_test, y_test_hat)

# Plot matrix
plt.figure(figsize=(5, 3))
sb.set(font_scale=1.2)
ax = sb.heatmap(conf_m,
                annot=True,
                xticklabels=['N', 'P'],
                yticklabels=['N', 'P'],
                cbar=False,
                cmap='Blues',
                linewidths=1,
                linecolor='black',
                fmt='.0f')
plt.yticks(rotation=0)
plt.xlabel('Predicted labels')
Пример #6
0
    model.compile(loss='categorical_crossentropy', optimizer=_OPTIMIZER)
    model.fit(oDataSet.attributes[oData.Training_indexes],
              binarizer(oDataSet.labels[oData.Training_indexes]),
              batch_size=1,
              epochs=epochs,
              verbose=1)

    y_pred = model.predict(
        oDataSet.attributes[oData.Testing_indexes]).argmax(axis=1)
    y_true = oDataSet.labels[oData.Testing_indexes]

    experiment.log_metric("test_accuracy", accuracy_score(y_true, y_pred))
    experiment.log_metric("beta", best_b)
    experiment.log_metric("neurons", best_p)
    experiment.log_confusion_matrix(matrix=confusion_matrix(y_true,
                                                            y_pred).tolist(),
                                    labels=oDataSet.labelsNames)
    # model.save('model.h5')
    # experiment.log_asset("model.h5")
    model.save_weights('model.weights')
    experiment.log_asset("model.weights")

    print(accuracy_score(y_true, y_pred))
    print(confusion_matrix(y_true, y_pred))
    oData.confusion_matrix = confusion_matrix(y_true, y_pred)
    oData.model = model
    oData.params = {
        "k_fold": K_FOLD,
        "GRID_RESULT": grid_result,
        "GRID_VALUES_NEURON": GRID_NEURON,
        "GRID_VALUES_BETA": GRID_B,
ap, f1_max, precision, recall, f1_max_th, fig_pre_rec, fig_th_pre_rec = precision_recall(y_test, 
                                                       score_test,
                                                       limit=1000,
                                                       label_anomaly=labels[0])

#fig_score_train = plot_score(score_train, 'train')
#fig_score_val = plot_score(score_val, 'validation')
fig_score_test = plot_score(score_test, 'test', 10, labels=y_test, th=f1_max_th)

fig_cumsum = pca.plot_cumsum()

y_pred, conf_matrix = predict(score_test, f1_max_th, y_test, labels)


experiment.add_tags([data, metric])
parameters = {'var': var, 'pc': pca.pcs_, 'metric': metric}
experiment.log_parameters(parameters)
experiment.log_metric('ap', ap)
experiment.log_metric('f1', f1_max)
experiment.log_metric('precision', precision)
experiment.log_metric('recall', recall)
experiment.log_metric('train_time', pca.time_)
experiment.log_parameter('th_f1', f1_max_th)
experiment.log_figure('cumsum', fig_cumsum)
experiment.log_figure('score_test',fig_score_test)
experiment.log_figure('precision_recall',fig_pre_rec)
experiment.log_figure('th_pre_rec_f1', fig_th_pre_rec)
experiment.log_confusion_matrix(matrix=conf_matrix, labels=labels)

experiment.end()
Пример #8
0
    def train_and_evaluate(self, train_gen, val_gen, epochs):
        """
        """
        experiment = Experiment(
            api_key="VNQSdbR1pw33EkuHbUsGUSZWr",
            project_name="piratesofthecaribbean",
            workspace="florpi",
        )
        model = self.build()
        with experiment.train():
            model_path = os.path.join(self.directory,
                                      "cnn_{epoch:02d}-{val_loss:.2f}.hdf5")
            callbacks = [
                ModelCheckpoint(model_path, monitor="val_loss", mode="min"),
                # EarlyStopping(
                #     monitor="val_loss",
                #     mode="min",
                #     min_delta=0.1,
                #     patience=1,
                #     restore_best_weights=True,
                # ),
            ]
            model.fit(
                train_gen,
                epochs=epochs,
                validation_data=val_gen,
                callbacks=callbacks,
                class_weight=CLASS_WEIGHTS,
            )
        model.save(os.path.join(self.directory, "cnn_final.h5"))
        # Run validation
        with experiment.test():
            probabilities = []
            y_val_all = []
            # reset generator
            val_gen.reset()
            for idx, (X_val, y_val) in tqdm(enumerate(val_gen),
                                            desc="valset",
                                            total=val_gen._num_examples):
                y_val_all += y_val.tolist()
                probs = model.predict(X_val)
                probabilities += probs.tolist()
                if idx > val_gen._num_examples:
                    break

            y_true = np.argmax(y_val_all, axis=-1)
            y_pred = np.argmax(probabilities, axis=-1)
            visualize.plot_confusion_matrix(y_true,
                                            y_pred,
                                            classes=LABELS,
                                            normalize=True,
                                            experiment=experiment)

            visualize.plot_confusion_matrix(y_true,
                                            y_pred,
                                            classes=LABELS,
                                            normalize=False,
                                            experiment=experiment)
            experiment.log_confusion_matrix(y_true=y_true,
                                            y_predicted=y_pred,
                                            labels=LABELS)
        return model
Пример #9
0
    #Get Alpha score for the weighted spectral/spatial average. Higher alpha favors spatial network.
    if model.config["train"]["weighted_sum"]:
        estimate_a = model.model.layers[-1].get_weights()
        experiment.log_metric(name="spatial-spectral weight", value=estimate_a[0][0])
        
    ##Evaluate
    #Evaluation scores, see config.yml for tfrecords path
    y_pred, y_true = model.evaluate(model.val_split)
    
    #Evaluation accuracy
    eval_acc = keras_metrics.CategoricalAccuracy()
    eval_acc.update_state(y_true, y_pred)
    experiment.log_metric("Evaluation Accuracy",eval_acc.result().numpy())
    
    macro, micro = metrics.f1_scores(y_true, y_pred)
    experiment.log_metric("MicroF1",micro)
    experiment.log_metric("MacroF1",macro)
    
    print("Unique labels in ytrue {}, unique labels in y_pred {}".format(np.unique(np.argmax(y_true,1)),np.unique(np.argmax(y_pred,1))))
    
    #Read class labels
    labeldf = pd.read_csv(model.classes_file)    
    experiment.log_confusion_matrix(y_true = y_true, y_predicted = y_pred, labels=list(labeldf.taxonID.values), title="Confusion Matrix")
    
    #Save model
    model.model.save("{}/{}.h5".format(save_dir,timestamp))


    
    
Пример #10
0
class ModelTrainer:
    def __init__(self, model, dataloader, args):
        self.model = model
        self.args = args
        self.data = dataloader
        self.metric = args.metric

        if (dataloader is not None):
            self.frq_log = len(dataloader['train']) // args.frq_log

        self.device = torch.device(
            'cuda' if torch.cuda.is_available() else 'cpu')
        model.to(self.device)

        if args.optimizer == 'sgd':
            self.optimizer = optim.SGD(model.parameters(),
                                       lr=args.lr,
                                       momentum=args.momentum,
                                       weight_decay=args.weight_decay)
        elif args.optimizer == 'adam':
            self.optimizer = optim.Adam(model.parameters(),
                                        lr=args.lr,
                                        betas=(args.beta1, 0.999),
                                        weight_decay=args.weight_decay)
        else:
            raise Exception('--optimizer should be one of {sgd, adam}')

        if args.scheduler == 'set':
            self.scheduler = optim.lr_scheduler.LambdaLR(
                self.optimizer,
                lambda epoch: 10**(epoch / args.scheduler_factor))
        elif args.scheduler == 'auto':
            self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
                self.optimizer,
                mode='min',
                factor=args.scheduler_factor,
                patience=5,
                verbose=True,
                threshold=0.0001,
                threshold_mode='rel',
                cooldown=0,
                min_lr=0,
                eps=1e-08)

        self.experiment = Experiment(api_key=args.comet_key,
                                     project_name=args.comet_project,
                                     workspace=args.comet_workspace,
                                     auto_weight_logging=True,
                                     auto_metric_logging=False,
                                     auto_param_logging=False)

        self.experiment.set_name(args.name)
        self.experiment.log_parameters(vars(args))
        self.experiment.set_model_graph(str(self.model))

    def train_one_epoch(self, epoch):

        self.model.train()
        train_loader = self.data['train']
        train_loss = 0
        correct = 0

        comet_offset = epoch * len(train_loader)

        for batch_idx, (data, target) in tqdm(enumerate(train_loader),
                                              leave=True,
                                              total=len(train_loader)):
            data, target = data.to(self.device), target.to(self.device)

            self.optimizer.zero_grad()
            output = self.model(data)
            loss = F.cross_entropy(output, target, reduction='sum')
            loss.backward()
            self.optimizer.step()

            pred = output.argmax(dim=1, keepdim=True)
            acc = pred.eq(target.view_as(pred)).sum().item()
            train_loss += loss.item()
            correct += acc

            loss = loss.item() / len(data)
            acc = 100. * acc / len(data)

            comet_step = comet_offset + batch_idx
            self.experiment.log_metric('batch_loss', loss, comet_step, epoch)
            self.experiment.log_metric('batch_acc', acc, comet_step, epoch)

            if (batch_idx + 1) % self.frq_log == 0:
                self.experiment.log_metric('log_loss', loss, comet_step, epoch)
                self.experiment.log_metric('log_acc', acc, comet_step, epoch)
                print('Epoch: {} [{}/{}]\tLoss: {:.6f}\tAcc: {:.2f}%'.format(
                    epoch + 1, (batch_idx + 1) * len(data),
                    len(train_loader.dataset), loss, acc))

        train_loss /= len(train_loader.dataset)
        acc = 100. * correct / len(train_loader.dataset)

        comet_step = comet_offset + len(train_loader) - 1
        self.experiment.log_metric('loss', train_loss, comet_step, epoch)
        self.experiment.log_metric('acc', acc, comet_step, epoch)

        print(
            'Epoch: {} [Done]\tLoss: {:.4f}\tAccuracy: {}/{} ({:.2f}%)'.format(
                epoch + 1, train_loss, correct, len(train_loader.dataset),
                acc))

        return {'loss': train_loss, 'acc': acc}

    def train(self):

        self.log_cmd()
        best = -1
        history = {'lr': [], 'train_loss': []}

        try:
            print(">> Training %s" % self.model.name)
            for epoch in range(self.args.nepoch):
                with self.experiment.train():
                    train_res = self.train_one_epoch(epoch)

                with self.experiment.validate():
                    print("\nvalidation...")
                    comet_offset = (epoch + 1) * len(self.data['train']) - 1
                    res = self.val(self.data['val'], comet_offset, epoch)

                if res[self.metric] > best:
                    best = res[self.metric]
                    self.save_weights(epoch)

                if self.args.scheduler == 'set':
                    lr = self.optimizer.param_groups[0]['lr']
                    history['lr'].append(lr)
                    history['train_loss'].append(train_res['loss'])

                    self.scheduler.step(epoch + 1)
                    lr = self.optimizer.param_groups[0]['lr']
                    print('learning rate changed to: %.10f' % lr)

                elif self.args.scheduler == 'auto':
                    self.scheduler.step(train_res['loss'])
        finally:
            print(">> Training model %s. [Stopped]" % self.model.name)
            self.experiment.log_asset_folder(os.path.join(
                self.args.outf, self.args.name, 'weights'),
                                             step=None,
                                             log_file_name=False,
                                             recursive=False)
            if self.args.scheduler == 'set':
                plt.semilogx(history['lr'], history['train_loss'])
                plt.grid(True)
                self.experiment.log_figure(figure=plt)
                plt.show()

    def val(self, val_loader, comet_offset=-1, epoch=-1):
        self.model.eval()
        test_loss = 0
        correct = 0

        labels = list(range(self.args.nclass))
        cm = np.zeros((len(labels), len(labels)))

        with torch.no_grad():
            for data, target in tqdm(val_loader,
                                     leave=True,
                                     total=len(val_loader)):
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                test_loss += F.cross_entropy(output, target,
                                             reduction='sum').item()
                pred = output.argmax(dim=1, keepdim=True)
                correct += pred.eq(target.view_as(pred)).sum().item()

                pred = pred.view_as(target).data.cpu().numpy()
                target = target.data.cpu().numpy()
                cm += confusion_matrix(target, pred, labels=labels)

        test_loss /= len(val_loader.dataset)
        accuracy = 100. * correct / len(val_loader.dataset)

        print('Evaluation: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)'.
              format(test_loss, correct, len(val_loader.dataset), accuracy))

        res = {'loss': test_loss, 'acc': accuracy}

        self.experiment.log_metrics(res, step=comet_offset, epoch=epoch)
        self.experiment.log_confusion_matrix(
            matrix=cm,
            labels=[ClassDict.getName(x) for x in labels],
            title='confusion matrix after epoch %03d' % epoch,
            file_name="confusion_matrix_%03d.json" % epoch)

        return res

    def test(self):
        self.load_weights()
        with self.experiment.test():
            print('\ntesting....')
            res = self.val(self.data['test'])

    def log_cmd(self):
        d = vars(self.args)
        cmd = '!python main.py \\\n'
        tab = '    '

        for k, v in d.items():
            if v is None or v == '' or (isinstance(v, bool) and v is False):
                continue

            if isinstance(v, bool):
                arg = '--{} \\\n'.format(k)
            else:
                arg = '--{} {} \\\n'.format(k, v)

            cmd = cmd + tab + arg

        # print(cmd);
        self.experiment.log_text(cmd)

    def save_weights(self, epoch: int):

        weight_dir = os.path.join(self.args.outf, self.args.name, 'weights')
        if not os.path.exists(weight_dir):
            os.makedirs(weight_dir)

        torch.save({
            'epoch': epoch,
            'state_dict': self.model.state_dict()
        }, os.path.join(weight_dir, 'model.pth'))

    def load_weights(self):

        path_g = self.args.weights_path

        if path_g is None:
            weight_dir = os.path.join(self.args.outf, self.args.name,
                                      'weights')
            path_g = os.path.join(weight_dir, 'model.pth')

        print('>> Loading weights...')
        weights_g = torch.load(path_g, map_location=self.device)['state_dict']
        self.model.load_state_dict(weights_g)
        print('   Done.')

    def predict(self, x):
        x = x / 2**15
        self.model.eval()
        with torch.no_grad():
            x = torch.from_numpy(x).float()
            x = self.transform(x)
            x = x.unsqueeze(0)
            x = self.model(x)
            x = F.softmax(x, dim=1)
            x = x.numpy()
        return x
Пример #11
0
                exp.log_metric(f"img_{k}", v, step=idx)

            # Confusion matrix
            confmat, _ = get_confusion_matrix(
                metrics_dict["tpr"],
                metrics_dict["tnr"],
                metrics_dict["fpr"],
                metrics_dict["fnr"],
                metrics_dict["mnr"],
                metrics_dict["mpr"],
            )
            confmat = np.around(confmat, decimals=3)
            exp.log_confusion_matrix(
                file_name=imgs_paths[idx].name + ".json",
                title=imgs_paths[idx].name,
                matrix=confmat,
                labels=["Cannot", "Must", "May"],
                row_label="Predicted",
                column_label="Ground truth",
            )

            if args.plot:
                # Plot prediction images
                fig_filename = plot_dir / imgs_paths[idx].name
                plot_images(
                    fig_filename,
                    img,
                    label,
                    pred,
                    metrics_dict,
                    maps_dict,
                    edge_coherence,
Пример #12
0
    11: "Sidewalks",
    12: "Crosswalks",
    13: "Major thoroughfares",
    14: "Highways",
    15: "Railways",
    16: "Paved parking lots",
    17: "Unpaved parking lots",
    18: "Cars",
    19: "Trains",
    20: "Stadium seat"
}

print("Unique labels in ytrue {}, unique labels in y_pred {}".format(
    np.unique(np.argmax(y_true, 1)), np.unique(np.argmax(y_pred, 1))))
experiment.log_confusion_matrix(y_true=y_true,
                                y_predicted=y_pred,
                                labels=list(class_labels.values()),
                                title="Confusion Matrix")

#Predict
predict_tfrecords = glob.glob(
    "/orange/ewhite/b.weinstein/Houston2018/tfrecords/predict/*.tfrecord")
results = model.predict_raster(predict_tfrecords, batch_size=512)
#predicted classes
print(results.label.unique())

predicted_raster = visualize.create_raster(results)
print(np.unique(predicted_raster))
experiment.log_image(name="Prediction",
                     image_data=predicted_raster,
                     image_colormap=visualize.discrete_cmap(20,
                                                            base_cmap="jet"))
Пример #13
0
    def model_eval(
        models: list,
        x: np.array,
        y: np.array,
        experiment: Experiment,
        postfix: str = "_train",
        outdir_models: str = None,
    ):
        """Peforms a model evaluation on training and test set and dump the predictions with the actual values
        into an outout file

        Arguments:
            models {list} -- list of tuples with model name and model itself
            x {np.array} -- feature matrix
            y {np.array} -- label vector
            experiment {comet_ml.Experiment}
            postfix {str} -- string that will be attached to filename
            outdir_models {str} -- output directory for models
        """

        predictions = []

        trainlogger.debug("entered evaluation function")

        for name, model in models:
            postfix_ = "_".join([postfix, name])
            outname_base_models = os.path.join(
                outdir_models, "_".join([STARTTIMESTRING, postfix_]))

            dump(model, outname_base_models + ".joblib")
            experiment.log_asset(outname_base_models + ".joblib")

            predict = model.predict(x)
            accuracy = accuracy_score(y, predict)

            f1_micro = f1_score(y, predict, average="micro")

            f1_macro = f1_score(y, predict, average="macro")

            balanced_accuracy = balanced_accuracy_score(y, predict)

            precision = precision_score(y, predict, average="micro")

            recall = recall_score(y, predict, average="micro")

            prediction = {
                "model": name,
                "outname_base_models": outname_base_models,
                "accuracy" + postfix_: accuracy,
                "f1_micro" + postfix_: f1_micro,
                "f1_macro" + postfix_: f1_macro,
                "balanced_accuracy" + postfix_: balanced_accuracy,
                "precision" + postfix_: precision,
                "recall" + postfix_: recall,
                "points" + postfix_: len(y),
                "n_features" + postfix_: x.shape[0],
            }

            predictions.append(prediction)

            try:
                experiment.log_metrics(prediction)
                experiment.log_confusion_matrix(
                    keras.utils.to_categorical(y),
                    keras.utils.to_categorical(predict),
                    title=postfix_.strip("_"),
                )
            except Exception:
                pass

        return predictions