def __init__(self, dbc_name, CP, VM): self.apply_steer_last = 0 self.prev_frame = -1 self.lkas_frame = -1 self.prev_lkas_counter = -1 self.hud_count = 0 self.car_fingerprint = CP.carFingerprint self.torq_enabled = False self.steer_rate_limited = False self.last_button_counter = -1 self.button_frame = -1 self.packer = CANPacker(dbc_name) self.params = Params() self.cachedParams = CachedParams() self.opParams = opParams() self.auto_resume = self.params.get_bool('jvePilot.settings.autoResume') self.minAccSetting = V_CRUISE_MIN_MS if self.params.get_bool( "IsMetric") else V_CRUISE_MIN_IMPERIAL_MS self.round_to_unit = CV.MS_TO_KPH if self.params.get_bool( "IsMetric") else CV.MS_TO_MPH self.autoFollowDistanceLock = None self.moving_fast = False self.min_steer_check = self.opParams.get("steer.checkMinimum")
def __init__(self, CP, init_v=0.0, init_a=0.0): self.CP = CP self.mpc = LongitudinalMpc() self.fcw = False self.cachedParams = CachedParams() self.v_desired = init_v self.a_desired = init_a self.alpha = np.exp(-DT_MDL / 2.0) self.v_desired_trajectory = np.zeros(CONTROL_N) self.a_desired_trajectory = np.zeros(CONTROL_N) self.j_desired_trajectory = np.zeros(CONTROL_N)
def __init__(self, wide_camera=False): self.ll_t = np.zeros((TRAJECTORY_SIZE, )) self.ll_x = np.zeros((TRAJECTORY_SIZE, )) self.lll_y = np.zeros((TRAJECTORY_SIZE, )) self.rll_y = np.zeros((TRAJECTORY_SIZE, )) self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL) self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL) self.lane_width = 3.7 self.lll_prob = 0. self.rll_prob = 0. self.d_prob = 0. self.lll_std = 0. self.rll_std = 0. self.l_lane_change_prob = 0. self.r_lane_change_prob = 0. self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET self.cachedParams = CachedParams()
#!/usr/bin/env python3 from cereal import car from selfdrive.car.chrysler.values import CAR from selfdrive.car import STD_CARGO_KG, scale_rot_inertia, scale_tire_stiffness, gen_empty_fingerprint, get_safety_config from selfdrive.car.interfaces import CarInterfaceBase from common.cached_params import CachedParams from common.op_params import opParams ButtonType = car.CarState.ButtonEvent.Type GAS_RESUME_SPEED = 2. cachedParams = CachedParams() opParams = opParams() class CarInterface(CarInterfaceBase): @staticmethod def get_pid_accel_limits(CP, current_speed, cruise_speed): return 10., 10. # high limits @staticmethod def get_params(candidate, fingerprint=gen_empty_fingerprint(), car_fw=None): min_steer_check = opParams.get('steer.checkMinimum') ret = CarInterfaceBase.get_std_params(candidate, fingerprint) ret.carName = "chrysler" ret.safetyConfigs = [ get_safety_config(car.CarParams.SafetyModel.chrysler) ]
class LanePlanner: def __init__(self, wide_camera=False): self.ll_t = np.zeros((TRAJECTORY_SIZE, )) self.ll_x = np.zeros((TRAJECTORY_SIZE, )) self.lll_y = np.zeros((TRAJECTORY_SIZE, )) self.rll_y = np.zeros((TRAJECTORY_SIZE, )) self.lane_width_estimate = FirstOrderFilter(3.7, 9.95, DT_MDL) self.lane_width_certainty = FirstOrderFilter(1.0, 0.95, DT_MDL) self.lane_width = 3.7 self.lll_prob = 0. self.rll_prob = 0. self.d_prob = 0. self.lll_std = 0. self.rll_std = 0. self.l_lane_change_prob = 0. self.r_lane_change_prob = 0. self.camera_offset = -CAMERA_OFFSET if wide_camera else CAMERA_OFFSET self.path_offset = -PATH_OFFSET if wide_camera else PATH_OFFSET self.cachedParams = CachedParams() def parse_model(self, md): if len(md.laneLines) == 4 and len( md.laneLines[0].t) == TRAJECTORY_SIZE: self.ll_t = (np.array(md.laneLines[1].t) + np.array(md.laneLines[2].t)) / 2 # left and right ll x is the same self.ll_x = md.laneLines[1].x # only offset left and right lane lines; offsetting path does not make sense device_offset = self.cachedParams.get_float( 'jvePilot.settings.deviceOffset', 5000) self.lll_y = np.array( md.laneLines[1].y) - (self.camera_offset + device_offset) self.rll_y = np.array( md.laneLines[2].y) - (self.camera_offset + device_offset) self.lll_prob = md.laneLineProbs[1] self.rll_prob = md.laneLineProbs[2] self.lll_std = md.laneLineStds[1] self.rll_std = md.laneLineStds[2] if len(md.meta.desireState): self.l_lane_change_prob = md.meta.desireState[ log.LateralPlan.Desire.laneChangeLeft] self.r_lane_change_prob = md.meta.desireState[ log.LateralPlan.Desire.laneChangeRight] def get_d_path(self, v_ego, path_t, path_xyz): # Reduce reliance on lanelines that are too far apart or # will be in a few seconds path_xyz[:, 1] -= self.path_offset l_prob, r_prob = self.lll_prob, self.rll_prob width_pts = self.rll_y - self.lll_y prob_mods = [] for t_check in [0.0, 1.5, 3.0]: width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts) prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0])) mod = min(prob_mods) l_prob *= mod r_prob *= mod # Reduce reliance on uncertain lanelines l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0]) r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0]) l_prob *= l_std_mod r_prob *= r_std_mod # Find current lanewidth self.lane_width_certainty.update(l_prob * r_prob) current_lane_width = abs(self.rll_y[0] - self.lll_y[0]) self.lane_width_estimate.update(current_lane_width) speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5]) self.lane_width = self.lane_width_certainty.x * self.lane_width_estimate.x + \ (1 - self.lane_width_certainty.x) * speed_lane_width clipped_lane_width = min(4.0, self.lane_width) path_from_left_lane = self.lll_y + clipped_lane_width / 2.0 path_from_right_lane = self.rll_y - clipped_lane_width / 2.0 self.d_prob = l_prob + r_prob - l_prob * r_prob lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001) safe_idxs = np.isfinite(self.ll_t) if safe_idxs[0]: lane_path_y_interp = np.interp(path_t, self.ll_t[safe_idxs], lane_path_y[safe_idxs]) path_xyz[:, 1] = self.d_prob * lane_path_y_interp + ( 1.0 - self.d_prob) * path_xyz[:, 1] else: cloudlog.warning("Lateral mpc - NaNs in laneline times, ignoring") return path_xyz
class CarController(): def __init__(self, dbc_name, CP, VM): self.apply_steer_last = 0 self.prev_frame = -1 self.lkas_frame = -1 self.prev_lkas_counter = -1 self.hud_count = 0 self.car_fingerprint = CP.carFingerprint self.torq_enabled = False self.steer_rate_limited = False self.last_button_counter = -1 self.button_frame = -1 self.packer = CANPacker(dbc_name) self.params = Params() self.cachedParams = CachedParams() self.opParams = opParams() self.auto_resume = self.params.get_bool('jvePilot.settings.autoResume') self.minAccSetting = V_CRUISE_MIN_MS if self.params.get_bool( "IsMetric") else V_CRUISE_MIN_IMPERIAL_MS self.round_to_unit = CV.MS_TO_KPH if self.params.get_bool( "IsMetric") else CV.MS_TO_MPH self.autoFollowDistanceLock = None self.moving_fast = False self.min_steer_check = self.opParams.get("steer.checkMinimum") def update(self, enabled, CS, actuators, pcm_cancel_cmd, hud_alert, gas_resume_speed, c): if CS.button_pressed(ButtonType.lkasToggle, False): c.jvePilotState.carControl.useLaneLines = not c.jvePilotState.carControl.useLaneLines self.params.put( "EndToEndToggle", "0" if c.jvePilotState.carControl.useLaneLines else "1") c.jvePilotState.notifyUi = True #*** control msgs *** can_sends = [] self.lkas_control(CS, actuators, can_sends, enabled, hud_alert, c.jvePilotState) self.wheel_button_control(CS, can_sends, enabled, gas_resume_speed, c.jvePilotState, pcm_cancel_cmd) return can_sends def lkas_control(self, CS, actuators, can_sends, enabled, hud_alert, jvepilot_state): if self.prev_frame == CS.frame: return self.prev_frame = CS.frame self.lkas_frame += 1 lkas_counter = CS.lkas_counter if self.prev_lkas_counter == lkas_counter: lkas_counter = (self.prev_lkas_counter + 1) % 16 # Predict the next frame self.prev_lkas_counter = lkas_counter # *** compute control surfaces *** # steer torque new_steer = int(round(actuators.steer * CarControllerParams.STEER_MAX)) apply_steer = apply_toyota_steer_torque_limits( new_steer, self.apply_steer_last, CS.out.steeringTorqueEps, CarControllerParams) self.steer_rate_limited = new_steer != apply_steer low_steer_models = self.car_fingerprint in (CAR.JEEP_CHEROKEE, CAR.PACIFICA_2017_HYBRID, CAR.PACIFICA_2018, CAR.PACIFICA_2018_HYBRID) if not self.min_steer_check: self.moving_fast = True self.torq_enabled = enabled or low_steer_models elif low_steer_models: self.moving_fast = not CS.out.steerError and CS.lkas_active self.torq_enabled = self.torq_enabled or CS.torq_status > 1 else: self.moving_fast = CS.out.vEgo > CS.CP.minSteerSpeed # for status message if CS.out.vEgo > (CS.CP.minSteerSpeed - 0.5): # for command high bit self.torq_enabled = True elif CS.out.vEgo < (CS.CP.minSteerSpeed - 3.0): self.torq_enabled = False # < 14.5m/s stock turns off this bit, but fine down to 13.5 lkas_active = self.moving_fast and enabled if not lkas_active: apply_steer = 0 self.apply_steer_last = apply_steer if self.lkas_frame % 10 == 0: # 0.1s period new_msg = create_lkas_heartbit( self.packer, 0 if jvepilot_state.carControl.useLaneLines else 1, CS.lkasHeartbit) can_sends.append(new_msg) if self.lkas_frame % 25 == 0: # 0.25s period if CS.lkas_car_model != -1: new_msg = create_lkas_hud(self.packer, CS.out.gearShifter, lkas_active, hud_alert, self.hud_count, CS.lkas_car_model) can_sends.append(new_msg) self.hud_count += 1 new_msg = create_lkas_command(self.packer, int(apply_steer), self.torq_enabled, lkas_counter) can_sends.append(new_msg) def wheel_button_control(self, CS, can_sends, enabled, gas_resume_speed, jvepilot_state, pcm_cancel_cmd): button_counter = jvepilot_state.carState.buttonCounter if button_counter == self.last_button_counter: return self.last_button_counter = button_counter self.button_frame += 1 button_counter_offset = 1 buttons_to_press = [] if pcm_cancel_cmd: buttons_to_press = ['ACC_CANCEL'] elif not CS.button_pressed(ButtonType.cancel): follow_inc_button = CS.button_pressed(ButtonType.followInc) follow_dec_button = CS.button_pressed(ButtonType.followDec) if jvepilot_state.carControl.autoFollow: follow_inc_button = CS.button_pressed(ButtonType.followInc, False) follow_dec_button = CS.button_pressed(ButtonType.followDec, False) if (follow_inc_button and follow_inc_button.pressedFrames < 50) or \ (follow_dec_button and follow_dec_button.pressedFrames < 50): jvepilot_state.carControl.autoFollow = False jvepilot_state.notifyUi = True elif (follow_inc_button and follow_inc_button.pressedFrames >= 50) or \ (follow_dec_button and follow_dec_button.pressedFrames >= 50): jvepilot_state.carControl.autoFollow = True jvepilot_state.notifyUi = True if enabled and not CS.out.brakePressed: button_counter_offset = [1, 1, 0, None][self.button_frame % 4] if button_counter_offset is not None: if ( not CS.out.cruiseState.enabled ) or CS.out.standstill: # Stopped and waiting to resume buttons_to_press = [ self.auto_resume_button(CS, gas_resume_speed) ] elif CS.out.cruiseState.enabled: # Control ACC buttons_to_press = [ self.auto_follow_button(CS, jvepilot_state), self.hybrid_acc_button(CS, jvepilot_state) ] buttons_to_press = list(filter(None, buttons_to_press)) if buttons_to_press is not None and len(buttons_to_press) > 0: new_msg = create_wheel_buttons_command( self.packer, button_counter + button_counter_offset, buttons_to_press) can_sends.append(new_msg) def auto_resume_button(self, CS, gas_resume_speed): if self.auto_resume and CS.out.vEgo <= gas_resume_speed: # Keep trying while under gas_resume_speed return 'ACC_RESUME' def hybrid_acc_button(self, CS, jvepilot_state): target = jvepilot_state.carControl.vTargetFuture + 2 * CV.MPH_TO_MS # add extra speed so ACC does the limiting # Move the adaptive curse control to the target speed eco_limit = None if jvepilot_state.carControl.accEco == 1: # if eco mode eco_limit = self.cachedParams.get_float( 'jvePilot.settings.accEco.speedAheadLevel1', 1000) elif jvepilot_state.carControl.accEco == 2: # if eco mode eco_limit = self.cachedParams.get_float( 'jvePilot.settings.accEco.speedAheadLevel2', 1000) if eco_limit: target = min(target, CS.out.vEgo + (eco_limit * CV.MPH_TO_MS)) # ACC Braking diff = CS.out.vEgo - target if diff > ACC_BRAKE_THRESHOLD and abs( target - jvepilot_state.carControl.vMaxCruise ) > ACC_BRAKE_THRESHOLD: # ignore change in max cruise speed target -= diff # round to nearest unit target = round( min(jvepilot_state.carControl.vMaxCruise, target) * self.round_to_unit) current = round(CS.out.cruiseState.speed * self.round_to_unit) if target < current and current > self.minAccSetting: return 'ACC_SPEED_DEC' elif target > current: return 'ACC_SPEED_INC' def auto_follow_button(self, CS, jvepilot_state): if jvepilot_state.carControl.autoFollow: crossover = [ 0, self.cachedParams.get_float( 'jvePilot.settings.autoFollow.speed1-2Bars', 1000) * CV.MPH_TO_MS, self.cachedParams.get_float( 'jvePilot.settings.autoFollow.speed2-3Bars', 1000) * CV.MPH_TO_MS, self.cachedParams.get_float( 'jvePilot.settings.autoFollow.speed3-4Bars', 1000) * CV.MPH_TO_MS ] if CS.out.vEgo < crossover[1]: target_follow = 0 elif CS.out.vEgo < crossover[2]: target_follow = 1 elif CS.out.vEgo < crossover[3]: target_follow = 2 else: target_follow = 3 if self.autoFollowDistanceLock is not None and abs( crossover[self.autoFollowDistanceLock] - CS.out.vEgo) > AUTO_FOLLOW_LOCK_MS: self.autoFollowDistanceLock = None # unlock if jvepilot_state.carState.accFollowDistance != target_follow and ( self.autoFollowDistanceLock or target_follow) == target_follow: self.autoFollowDistanceLock = target_follow # going from close to far, use upperbound if jvepilot_state.carState.accFollowDistance > target_follow: return 'ACC_FOLLOW_DEC' else: return 'ACC_FOLLOW_INC'
def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster(['jvePilotState', 'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams']) self.camera_packets = ["roadCameraState", "driverCameraState"] if TICI: self.camera_packets.append("wideRoadCameraState") params = Params() self.joystick_mode = params.get_bool("JoystickDebugMode") joystick_packet = ['testJoystick'] if self.joystick_mode else [] self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState'] if SIMULATION else None self.sm = messaging.SubMaster(['jvePilotUIState', 'deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'managerState', 'liveParameters', 'radarState'] + self.camera_packets + joystick_packet, ignore_alive=ignore, ignore_avg_freq=['radarState', 'longitudinalPlan']) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) if TICI: self.log_sock = messaging.sub_sock('androidLog') # wait for one pandaState and one CAN packet print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan']) # read params self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") community_feature_toggle = params.get_bool("CommunityFeaturesToggle") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature = self.CP.communityFeature or \ self.CP.fingerprintSource == car.CarParams.FingerprintSource.can community_feature_disallowed = community_feature and (not community_feature_toggle) self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: safety_config = car.CarParams.SafetyConfig.new_message() safety_config.safetyModel = car.CarParams.SafetyModel.noOutput self.CP.safetyConfigs = [safety_config] # Write CarParams for radard cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP) self.VM = VehicleModel(self.CP) if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.cruise_mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False self.v_target = 0. self.buttonPressTimes = {} self.cachedParams = CachedParams() self.reverse_acc_button_change = self.cachedParams.get('jvePilot.settings.reverseAccSpeedChange', 0) == "1" self.jvePilotState = car.JvePilotState.new_message() self.jvePilotState.carControl.autoFollow = params.get_bool('jvePilot.settings.autoFollow') self.jvePilotState.carControl.useLaneLines = not params.get_bool('EndToEndToggle') self.jvePilotState.carControl.accEco = int(params.get('jvePilot.carState.accEco', encoding='utf8') or "1") self.ui_notify() # TODO: no longer necessary, aside from process replay self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if community_feature_disallowed and car_recognized and not self.CP.dashcamOnly: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) if len(self.CP.carFw) > 0: set_offroad_alert("Offroad_CarUnrecognized", True) else: set_offroad_alert("Offroad_NoFirmware", True) elif self.read_only: self.events.add(EventName.dashcamMode, static=True) elif self.joystick_mode: self.events.add(EventName.joystickDebug, static=True) self.startup_event = None # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default
class Controls: def __init__(self, sm=None, pm=None, can_sock=None): config_realtime_process(4 if TICI else 3, Priority.CTRL_HIGH) # Setup sockets self.pm = pm if self.pm is None: self.pm = messaging.PubMaster(['jvePilotState', 'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents', 'carParams']) self.camera_packets = ["roadCameraState", "driverCameraState"] if TICI: self.camera_packets.append("wideRoadCameraState") params = Params() self.joystick_mode = params.get_bool("JoystickDebugMode") joystick_packet = ['testJoystick'] if self.joystick_mode else [] self.sm = sm if self.sm is None: ignore = ['driverCameraState', 'managerState'] if SIMULATION else None self.sm = messaging.SubMaster(['jvePilotUIState', 'deviceState', 'pandaStates', 'peripheralState', 'modelV2', 'liveCalibration', 'driverMonitoringState', 'longitudinalPlan', 'lateralPlan', 'liveLocationKalman', 'managerState', 'liveParameters', 'radarState'] + self.camera_packets + joystick_packet, ignore_alive=ignore, ignore_avg_freq=['radarState', 'longitudinalPlan']) self.can_sock = can_sock if can_sock is None: can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100 self.can_sock = messaging.sub_sock('can', timeout=can_timeout) if TICI: self.log_sock = messaging.sub_sock('androidLog') # wait for one pandaState and one CAN packet print("Waiting for CAN messages...") get_one_can(self.can_sock) self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan']) # read params self.is_metric = params.get_bool("IsMetric") self.is_ldw_enabled = params.get_bool("IsLdwEnabled") community_feature_toggle = params.get_bool("CommunityFeaturesToggle") openpilot_enabled_toggle = params.get_bool("OpenpilotEnabledToggle") passive = params.get_bool("Passive") or not openpilot_enabled_toggle # detect sound card presence and ensure successful init sounds_available = HARDWARE.get_sound_card_online() car_recognized = self.CP.carName != 'mock' controller_available = self.CI.CC is not None and not passive and not self.CP.dashcamOnly community_feature = self.CP.communityFeature or \ self.CP.fingerprintSource == car.CarParams.FingerprintSource.can community_feature_disallowed = community_feature and (not community_feature_toggle) self.read_only = not car_recognized or not controller_available or \ self.CP.dashcamOnly or community_feature_disallowed if self.read_only: safety_config = car.CarParams.SafetyConfig.new_message() safety_config.safetyModel = car.CarParams.SafetyModel.noOutput self.CP.safetyConfigs = [safety_config] # Write CarParams for radard cp_bytes = self.CP.to_bytes() params.put("CarParams", cp_bytes) put_nonblocking("CarParamsCache", cp_bytes) self.CC = car.CarControl.new_message() self.AM = AlertManager() self.events = Events() self.LoC = LongControl(self.CP) self.VM = VehicleModel(self.CP) if self.CP.steerControlType == car.CarParams.SteerControlType.angle: self.LaC = LatControlAngle(self.CP) elif self.CP.lateralTuning.which() == 'pid': self.LaC = LatControlPID(self.CP, self.CI) elif self.CP.lateralTuning.which() == 'indi': self.LaC = LatControlINDI(self.CP) elif self.CP.lateralTuning.which() == 'lqr': self.LaC = LatControlLQR(self.CP) self.initialized = False self.state = State.disabled self.enabled = False self.active = False self.can_rcv_error = False self.soft_disable_timer = 0 self.v_cruise_kph = 255 self.v_cruise_kph_last = 0 self.mismatch_counter = 0 self.cruise_mismatch_counter = 0 self.can_error_counter = 0 self.last_blinker_frame = 0 self.saturated_count = 0 self.distance_traveled = 0 self.last_functional_fan_frame = 0 self.events_prev = [] self.current_alert_types = [ET.PERMANENT] self.logged_comm_issue = False self.v_target = 0. self.buttonPressTimes = {} self.cachedParams = CachedParams() self.reverse_acc_button_change = self.cachedParams.get('jvePilot.settings.reverseAccSpeedChange', 0) == "1" self.jvePilotState = car.JvePilotState.new_message() self.jvePilotState.carControl.autoFollow = params.get_bool('jvePilot.settings.autoFollow') self.jvePilotState.carControl.useLaneLines = not params.get_bool('EndToEndToggle') self.jvePilotState.carControl.accEco = int(params.get('jvePilot.carState.accEco', encoding='utf8') or "1") self.ui_notify() # TODO: no longer necessary, aside from process replay self.sm['liveParameters'].valid = True self.startup_event = get_startup_event(car_recognized, controller_available, len(self.CP.carFw) > 0) if not sounds_available: self.events.add(EventName.soundsUnavailable, static=True) if community_feature_disallowed and car_recognized and not self.CP.dashcamOnly: self.events.add(EventName.communityFeatureDisallowed, static=True) if not car_recognized: self.events.add(EventName.carUnrecognized, static=True) if len(self.CP.carFw) > 0: set_offroad_alert("Offroad_CarUnrecognized", True) else: set_offroad_alert("Offroad_NoFirmware", True) elif self.read_only: self.events.add(EventName.dashcamMode, static=True) elif self.joystick_mode: self.events.add(EventName.joystickDebug, static=True) self.startup_event = None # controlsd is driven by can recv, expected at 100Hz self.rk = Ratekeeper(100, print_delay_threshold=None) self.prof = Profiler(False) # off by default def update_events(self, CS): """Compute carEvents from carState""" self.events.clear() self.events.add_from_msg(CS.events) self.events.add_from_msg(self.sm['driverMonitoringState'].events) # Handle startup event if self.startup_event is not None: self.events.add(self.startup_event) self.startup_event = None # Don't add any more events if not initialized if not self.initialized: self.events.add(EventName.controlsInitializing) return # Create events for battery, temperature, disk space, and memory if EON and (self.sm['peripheralState'].pandaType != PandaType.uno) and \ self.sm['deviceState'].batteryPercent < 1 and self.sm['deviceState'].chargingError: # at zero percent battery, while discharging, OP should not allowed self.events.add(EventName.lowBattery) if self.sm['deviceState'].thermalStatus >= ThermalStatus.red: self.events.add(EventName.overheat) if self.sm['deviceState'].freeSpacePercent < 7 and not SIMULATION: # under 7% of space free no enable allowed self.events.add(EventName.outOfSpace) # TODO: make tici threshold the same if self.sm['deviceState'].memoryUsagePercent > (90 if TICI else 65) and not SIMULATION: self.events.add(EventName.lowMemory) # TODO: enable this once loggerd CPU usage is more reasonable #cpus = list(self.sm['deviceState'].cpuUsagePercent)[:(-1 if EON else None)] #if max(cpus, default=0) > 95 and not SIMULATION: # self.events.add(EventName.highCpuUsage) # Alert if fan isn't spinning for 5 seconds if self.sm['peripheralState'].pandaType in [PandaType.uno, PandaType.dos]: if self.sm['peripheralState'].fanSpeedRpm == 0 and self.sm['deviceState'].fanSpeedPercentDesired > 50: if (self.sm.frame - self.last_functional_fan_frame) * DT_CTRL > 5.0: self.events.add(EventName.fanMalfunction) else: self.last_functional_fan_frame = self.sm.frame # Handle calibration status cal_status = self.sm['liveCalibration'].calStatus if cal_status != Calibration.CALIBRATED: if cal_status == Calibration.UNCALIBRATED: self.events.add(EventName.calibrationIncomplete) else: self.events.add(EventName.calibrationInvalid) # Handle lane change if self.sm['lateralPlan'].laneChangeState == LaneChangeState.preLaneChange: direction = self.sm['lateralPlan'].laneChangeDirection if (CS.leftBlindspot and direction == LaneChangeDirection.left) or \ (CS.rightBlindspot and direction == LaneChangeDirection.right): self.events.add(EventName.laneChangeBlocked) else: if direction == LaneChangeDirection.left: self.events.add(EventName.preLaneChangeLeft) else: self.events.add(EventName.preLaneChangeRight) elif self.sm['lateralPlan'].laneChangeState in [LaneChangeState.laneChangeStarting, LaneChangeState.laneChangeFinishing]: self.events.add(EventName.laneChange) if self.can_rcv_error or not CS.canValid: self.events.add(EventName.canError) for i, pandaState in enumerate(self.sm['pandaStates']): # All pandas must match the list of safetyConfigs, and if outside this list, must be silent or noOutput if i < len(self.CP.safetyConfigs): safety_mismatch = pandaState.safetyModel != self.CP.safetyConfigs[i].safetyModel or pandaState.safetyParam != self.CP.safetyConfigs[i].safetyParam else: safety_mismatch = pandaState.safetyModel not in IGNORED_SAFETY_MODES if safety_mismatch or self.mismatch_counter >= 200: self.events.add(EventName.controlsMismatch) if log.PandaState.FaultType.relayMalfunction in pandaState.faults: self.events.add(EventName.relayMalfunction) # Check for HW or system issues if len(self.sm['radarState'].radarErrors): self.events.add(EventName.radarFault) elif not self.sm.valid["pandaStates"]: self.events.add(EventName.usbError) elif not self.sm.all_alive_and_valid(): self.events.add(EventName.commIssue) if not self.logged_comm_issue: invalid = [s for s, valid in self.sm.valid.items() if not valid] not_alive = [s for s, alive in self.sm.alive.items() if not alive] cloudlog.event("commIssue", invalid=invalid, not_alive=not_alive) self.logged_comm_issue = True else: self.logged_comm_issue = False if not self.sm['liveParameters'].valid: self.events.add(EventName.vehicleModelInvalid) if not self.sm['lateralPlan'].mpcSolutionValid: self.events.add(EventName.plannerError) if not self.sm['liveLocationKalman'].sensorsOK and not NOSENSOR: if self.sm.frame > 5 / DT_CTRL: # Give locationd some time to receive all the inputs self.events.add(EventName.sensorDataInvalid) if not self.sm['liveLocationKalman'].posenetOK: self.events.add(EventName.posenetInvalid) if not self.sm['liveLocationKalman'].deviceStable: self.events.add(EventName.deviceFalling) for pandaState in self.sm['pandaStates']: if log.PandaState.FaultType.relayMalfunction in pandaState.faults: self.events.add(EventName.relayMalfunction) if not REPLAY: # Check for mismatch between openpilot and car's PCM cruise_mismatch = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) self.cruise_mismatch_counter = self.cruise_mismatch_counter + 1 if cruise_mismatch else 0 if self.cruise_mismatch_counter > int(3. / DT_CTRL): self.events.add(EventName.cruiseMismatch) # Check for FCW stock_long_is_braking = self.enabled and not self.CP.openpilotLongitudinalControl and CS.aEgo < -1.5 model_fcw = self.sm['modelV2'].meta.hardBrakePredicted and not CS.brakePressed and not stock_long_is_braking planner_fcw = self.sm['longitudinalPlan'].fcw and self.enabled if planner_fcw or model_fcw: self.events.add(EventName.fcw) if TICI: logs = messaging.drain_sock(self.log_sock, wait_for_one=False) messages = [] for m in logs: try: messages.append(m.androidLog.message) except UnicodeDecodeError: pass for err in ["ERROR_CRC", "ERROR_ECC", "ERROR_STREAM_UNDERFLOW", "APPLY FAILED"]: for m in messages: if err not in m: continue csid = m.split("CSID:")[-1].split(" ")[0] evt = {"0": EventName.roadCameraError, "1": EventName.wideRoadCameraError, "2": EventName.driverCameraError}.get(csid, None) if evt is not None: self.events.add(evt) # TODO: fix simulator if not SIMULATION: if not NOSENSOR: if not self.sm['liveLocationKalman'].gpsOK and (self.distance_traveled > 1000): # Not show in first 1 km to allow for driving out of garage. This event shows after 5 minutes self.events.add(EventName.noGps) if not self.sm.all_alive(self.camera_packets): self.events.add(EventName.cameraMalfunction) if self.sm['modelV2'].frameDropPerc > 20: self.events.add(EventName.modeldLagging) if self.sm['liveLocationKalman'].excessiveResets: self.events.add(EventName.localizerMalfunction) # Check if all manager processes are running not_running = set(p.name for p in self.sm['managerState'].processes if not p.running) if self.sm.rcv_frame['managerState'] and (not_running - IGNORE_PROCESSES): self.events.add(EventName.processNotRunning) # Only allow engagement with brake pressed when stopped behind another stopped car # speeds = self.sm['longitudinalPlan'].speeds # if len(speeds) > 1: # v_future = speeds[-1] # else: # v_future = 100.0 # if CS.brakePressed and v_future >= self.CP.vEgoStarting \ # and self.CP.openpilotLongitudinalControl and CS.vEgo < 0.3: # self.events.add(EventName.noTarget) def data_sample(self): """Receive data from sockets and update carState""" # Update carState from CAN can_strs = messaging.drain_sock_raw(self.can_sock, wait_for_one=True) CS = self.CI.update(self.CC, can_strs) self.sm.update(0) all_valid = CS.canValid and self.sm.all_alive_and_valid() if not self.initialized and (all_valid or self.sm.frame * DT_CTRL > 3.5 or SIMULATION): if not self.read_only: self.CI.init(self.CP, self.can_sock, self.pm.sock['sendcan']) self.initialized = True Params().put_bool("ControlsReady", True) # Check for CAN timeout if not can_strs: self.can_error_counter += 1 self.can_rcv_error = True else: self.can_rcv_error = False # When the panda and controlsd do not agree on controls_allowed # we want to disengage openpilot. However the status from the panda goes through # another socket other than the CAN messages and one can arrive earlier than the other. # Therefore we allow a mismatch for two samples, then we trigger the disengagement. if not self.enabled: self.mismatch_counter = 0 # All pandas not in silent mode must have controlsAllowed when openpilot is enabled if any(not ps.controlsAllowed and self.enabled for ps in self.sm['pandaStates'] if ps.safetyModel not in IGNORED_SAFETY_MODES): self.mismatch_counter += 1 self.distance_traveled += CS.vEgo * DT_CTRL if self.jvePilotState.notifyUi: self.ui_notify() elif self.sm.updated['jvePilotUIState']: self.jvePilotState.carControl.autoFollow = self.sm['jvePilotUIState'].autoFollow self.jvePilotState.carControl.accEco = self.sm['jvePilotUIState'].accEco put_nonblocking("jvePilot.carState.accEco", str(self.sm['jvePilotUIState'].accEco)) return CS def ui_notify(self): self.jvePilotState.notifyUi = False msg = messaging.new_message('jvePilotUIState') msg.jvePilotUIState = self.sm['jvePilotUIState'] msg.jvePilotUIState.autoFollow = self.jvePilotState.carControl.autoFollow msg.jvePilotUIState.accEco = self.jvePilotState.carControl.accEco msg.jvePilotUIState.useLaneLines = self.jvePilotState.carControl.useLaneLines self.pm.send('jvePilotState', msg) def state_transition(self, CS): """Compute conditional state transitions and execute actions on state transitions""" self.v_cruise_kph_last = self.v_cruise_kph # if stock cruise is completely disabled, then we can use our own set speed logic if not self.CP.pcmCruise or not self.CP.pcmCruiseSpeed: self.v_cruise_kph = update_v_cruise(self.v_cruise_kph, CS.buttonEvents, self.enabled, self.reverse_acc_button_change, self.is_metric) elif self.CP.pcmCruise and CS.cruiseState.enabled: self.v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH # decrement the soft disable timer at every step, as it's reset on # entrance in SOFT_DISABLING state self.soft_disable_timer = max(0, self.soft_disable_timer - 1) self.current_alert_types = [ET.PERMANENT] # ENABLED, PRE ENABLING, SOFT DISABLING if self.state != State.disabled: # user and immediate disable always have priority in a non-disabled state if self.events.any(ET.USER_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.USER_DISABLE) elif self.events.any(ET.IMMEDIATE_DISABLE): self.state = State.disabled self.current_alert_types.append(ET.IMMEDIATE_DISABLE) else: # ENABLED if self.state == State.enabled: if self.events.any(ET.SOFT_DISABLE): self.state = State.softDisabling self.soft_disable_timer = int(SOFT_DISABLE_TIME / DT_CTRL) self.current_alert_types.append(ET.SOFT_DISABLE) # SOFT DISABLING elif self.state == State.softDisabling: if not self.events.any(ET.SOFT_DISABLE): # no more soft disabling condition, so go back to ENABLED self.state = State.enabled elif self.events.any(ET.SOFT_DISABLE) and self.soft_disable_timer > 0: self.current_alert_types.append(ET.SOFT_DISABLE) elif self.soft_disable_timer <= 0: self.state = State.disabled # PRE ENABLING elif self.state == State.preEnabled: if not self.events.any(ET.PRE_ENABLE): self.state = State.enabled else: self.current_alert_types.append(ET.PRE_ENABLE) # DISABLED elif self.state == State.disabled: if self.events.any(ET.ENABLE): if self.events.any(ET.NO_ENTRY): self.current_alert_types.append(ET.NO_ENTRY) else: if self.events.any(ET.PRE_ENABLE): self.state = State.preEnabled else: self.state = State.enabled self.current_alert_types.append(ET.ENABLE) self.v_cruise_kph = initialize_v_cruise(CS.vEgo, CS.buttonEvents, self.v_cruise_kph_last, self.is_metric) # Check if actuators are enabled self.active = self.state == State.enabled or self.state == State.softDisabling if self.active: self.current_alert_types.append(ET.WARNING) # Check if openpilot is engaged self.enabled = self.active or self.state == State.preEnabled def state_control(self, CS): """Given the state, this function returns an actuators packet""" # Update VehicleModel params = self.sm['liveParameters'] x = max(params.stiffnessFactor, 0.1) sr = max(params.steerRatio, 0.1) self.VM.update_params(x, sr) lat_plan = self.sm['lateralPlan'] long_plan = self.sm['longitudinalPlan'] actuators = car.CarControl.Actuators.new_message() actuators.longControlState = self.LoC.long_control_state if CS.leftBlinker or CS.rightBlinker: self.last_blinker_frame = self.sm.frame # State specific actions if not self.active: self.LaC.reset() self.LoC.reset(v_pid=CS.vEgo) if not self.joystick_mode: # accel PID loop pid_accel_limits = self.CI.get_pid_accel_limits(self.CP, CS.vEgo, self.v_cruise_kph * CV.KPH_TO_MS) actuators.accel, self.v_target = self.LoC.update(self.active, CS, self.CP, long_plan, pid_accel_limits) # Steering PID loop and lateral MPC lat_active = self.active and not CS.steerWarning and not CS.steerError and CS.vEgo > self.CP.minSteerSpeed desired_curvature, desired_curvature_rate = get_lag_adjusted_curvature(self.CP, CS.vEgo, lat_plan.psis, lat_plan.curvatures, lat_plan.curvatureRates) actuators.steer, actuators.steeringAngleDeg, lac_log = self.LaC.update(lat_active, CS, self.CP, self.VM, params, desired_curvature, desired_curvature_rate) else: lac_log = log.ControlsState.LateralDebugState.new_message() if self.sm.rcv_frame['testJoystick'] > 0 and self.active: actuators.accel = 4.0*clip(self.sm['testJoystick'].axes[0], -1, 1) steer = clip(self.sm['testJoystick'].axes[1], -1, 1) # max angle is 45 for angle-based cars actuators.steer, actuators.steeringAngleDeg = steer, steer * 45. lac_log.active = True lac_log.steeringAngleDeg = CS.steeringAngleDeg lac_log.output = steer lac_log.saturated = abs(steer) >= 0.9 # Check for difference between desired angle and angle for angle based control angle_control_saturated = self.CP.steerControlType == car.CarParams.SteerControlType.angle and \ abs(actuators.steeringAngleDeg - CS.steeringAngleDeg) > STEER_ANGLE_SATURATION_THRESHOLD if angle_control_saturated and not CS.steeringPressed and self.active: self.saturated_count += 1 else: self.saturated_count = 0 # Send a "steering required alert" if saturation count has reached the limit if (lac_log.saturated and not CS.steeringPressed) or \ (self.saturated_count > STEER_ANGLE_SATURATION_TIMEOUT): if len(lat_plan.dPathPoints): # Check if we deviated from the path # TODO use desired vs actual curvature left_deviation = actuators.steer > 0 and lat_plan.dPathPoints[0] < -0.20 right_deviation = actuators.steer < 0 and lat_plan.dPathPoints[0] > 0.20 if left_deviation or right_deviation: self.events.add(EventName.steerSaturated) # Ensure no NaNs/Infs for p in ACTUATOR_FIELDS: attr = getattr(actuators, p) if not isinstance(attr, Number): continue if not math.isfinite(attr): cloudlog.error(f"actuators.{p} not finite {actuators.to_dict()}") setattr(actuators, p, 0.0) return actuators, lac_log def publish_logs(self, CS, start_time, actuators, lac_log): """Send actuators and hud commands to the car, send controlsstate and MPC logging""" CC = car.CarControl.new_message() CC.jvePilotState.carState = CS.jvePilotCarState CC.jvePilotState.carControl = self.jvePilotState.carControl CC.enabled = self.enabled CC.active = self.active CC.actuators = actuators if len(self.sm['liveLocationKalman'].orientationNED.value) > 2: CC.roll = self.sm['liveLocationKalman'].orientationNED.value[0] CC.pitch = self.sm['liveLocationKalman'].orientationNED.value[1] CC.cruiseControl.cancel = CS.cruiseState.enabled and (not self.enabled or not self.CP.pcmCruise) if self.joystick_mode and self.sm.rcv_frame['testJoystick'] > 0 and self.sm['testJoystick'].buttons[0]: CC.cruiseControl.cancel = True # target the future speed v_max_speed = float(self.v_cruise_kph * CV.KPH_TO_MS) CC.jvePilotState.carControl.vMaxCruise = v_max_speed v_target_future = self.v_target speeds = self.sm['longitudinalPlan'].speeds if len(speeds) > 0: v_target_future = min(speeds) if actuators.accel < 0 else max(speeds) CC.jvePilotState.carControl.vTargetFuture = min(v_max_speed, v_target_future) CC.hudControl.setSpeed = float(self.v_cruise_kph * CV.KPH_TO_MS) CC.hudControl.speedVisible = self.enabled CC.hudControl.lanesVisible = self.enabled CC.hudControl.leadVisible = self.sm['longitudinalPlan'].hasLead CC.hudControl.rightLaneVisible = True CC.hudControl.leftLaneVisible = True recent_blinker = (self.sm.frame - self.last_blinker_frame) * DT_CTRL < 5.0 # 5s blinker cooldown ldw_allowed = self.is_ldw_enabled and CS.vEgo > LDW_MIN_SPEED and not recent_blinker \ and not self.active and self.sm['liveCalibration'].calStatus == Calibration.CALIBRATED meta = self.sm['modelV2'].meta if len(meta.desirePrediction) and ldw_allowed: right_lane_visible = self.sm['lateralPlan'].rProb > 0.5 left_lane_visible = self.sm['lateralPlan'].lProb > 0.5 l_lane_change_prob = meta.desirePrediction[Desire.laneChangeLeft - 1] r_lane_change_prob = meta.desirePrediction[Desire.laneChangeRight - 1] device_offset = self.cachedParams.get_float('jvePilot.settings.deviceOffset', 5000) l_lane_close = left_lane_visible and (self.sm['modelV2'].laneLines[1].y[0] > -(1.08 + (CAMERA_OFFSET + device_offset))) r_lane_close = right_lane_visible and (self.sm['modelV2'].laneLines[2].y[0] < (1.08 - (CAMERA_OFFSET + device_offset))) CC.hudControl.leftLaneDepart = bool(l_lane_change_prob > LANE_DEPARTURE_THRESHOLD and l_lane_close) CC.hudControl.rightLaneDepart = bool(r_lane_change_prob > LANE_DEPARTURE_THRESHOLD and r_lane_close) if CC.hudControl.rightLaneDepart or CC.hudControl.leftLaneDepart: self.events.add(EventName.ldw) clear_event = ET.WARNING if ET.WARNING not in self.current_alert_types else None alerts = self.events.create_alerts(self.current_alert_types, [self.CP, self.sm, self.is_metric, self.soft_disable_timer]) self.AM.add_many(self.sm.frame, alerts) self.AM.process_alerts(self.sm.frame, clear_event) CC.hudControl.visualAlert = self.AM.visual_alert if not self.read_only and self.initialized: # send car controls over can can_sends = self.CI.apply(CC) self.pm.send('sendcan', can_list_to_can_capnp(can_sends, msgtype='sendcan', valid=CS.canValid)) self.jvePilotState.carControl = CC.jvePilotState.carControl self.jvePilotState.notifyUi = CC.jvePilotState.notifyUi force_decel = (self.sm['driverMonitoringState'].awarenessStatus < 0.) or \ (self.state == State.softDisabling) # Curvature & Steering angle params = self.sm['liveParameters'] steer_angle_without_offset = math.radians(CS.steeringAngleDeg - params.angleOffsetAverageDeg) curvature = -self.VM.calc_curvature(steer_angle_without_offset, CS.vEgo) # controlsState dat = messaging.new_message('controlsState') dat.valid = CS.canValid controlsState = dat.controlsState controlsState.alertText1 = self.AM.alert_text_1 controlsState.alertText2 = self.AM.alert_text_2 controlsState.alertSize = self.AM.alert_size controlsState.alertStatus = self.AM.alert_status controlsState.alertBlinkingRate = self.AM.alert_rate controlsState.alertType = self.AM.alert_type controlsState.alertSound = self.AM.audible_alert controlsState.canMonoTimes = list(CS.canMonoTimes) controlsState.longitudinalPlanMonoTime = self.sm.logMonoTime['longitudinalPlan'] controlsState.lateralPlanMonoTime = self.sm.logMonoTime['lateralPlan'] controlsState.enabled = self.enabled controlsState.active = self.active controlsState.curvature = curvature controlsState.state = self.state controlsState.engageable = not self.events.any(ET.NO_ENTRY) controlsState.longControlState = self.LoC.long_control_state controlsState.vPid = float(self.LoC.v_pid) controlsState.vCruise = float(self.v_cruise_kph) controlsState.upAccelCmd = float(self.LoC.pid.p) controlsState.uiAccelCmd = float(self.LoC.pid.i) controlsState.ufAccelCmd = float(self.LoC.pid.f) controlsState.cumLagMs = -self.rk.remaining * 1000. controlsState.startMonoTime = int(start_time * 1e9) controlsState.forceDecel = bool(force_decel) controlsState.canErrorCounter = self.can_error_counter if self.joystick_mode: controlsState.lateralControlState.debugState = lac_log elif self.CP.steerControlType == car.CarParams.SteerControlType.angle: controlsState.lateralControlState.angleState = lac_log elif self.CP.lateralTuning.which() == 'pid': controlsState.lateralControlState.pidState = lac_log elif self.CP.lateralTuning.which() == 'lqr': controlsState.lateralControlState.lqrState = lac_log elif self.CP.lateralTuning.which() == 'indi': controlsState.lateralControlState.indiState = lac_log self.pm.send('controlsState', dat) # carState car_events = self.events.to_msg() cs_send = messaging.new_message('carState') cs_send.valid = CS.canValid cs_send.carState = CS cs_send.carState.events = car_events self.pm.send('carState', cs_send) # carEvents - logged every second or on change if (self.sm.frame % int(1. / DT_CTRL) == 0) or (self.events.names != self.events_prev): ce_send = messaging.new_message('carEvents', len(self.events)) ce_send.carEvents = car_events self.pm.send('carEvents', ce_send) self.events_prev = self.events.names.copy() # carParams - logged every 50 seconds (> 1 per segment) if (self.sm.frame % int(50. / DT_CTRL) == 0): cp_send = messaging.new_message('carParams') cp_send.carParams = self.CP self.pm.send('carParams', cp_send) # carControl cc_send = messaging.new_message('carControl') cc_send.valid = CS.canValid cc_send.carControl = CC self.pm.send('carControl', cc_send) # copy CarControl to pass to CarInterface on the next iteration self.CC = CC def step(self): start_time = sec_since_boot() self.prof.checkpoint("Ratekeeper", ignore=True) # Sample data from sockets and get a carState CS = self.data_sample() self.prof.checkpoint("Sample") self.update_events(CS) if not self.read_only and self.initialized: # Update control state self.state_transition(CS) self.prof.checkpoint("State transition") # Compute actuators (runs PID loops and lateral MPC) actuators, lac_log = self.state_control(CS) self.prof.checkpoint("State Control") # Publish data self.publish_logs(CS, start_time, actuators, lac_log) self.prof.checkpoint("Sent") def controlsd_thread(self): while True: self.step() self.rk.monitor_time() self.prof.display()
class Planner: def __init__(self, CP, init_v=0.0, init_a=0.0): self.CP = CP self.mpc = LongitudinalMpc() self.fcw = False self.cachedParams = CachedParams() self.v_desired = init_v self.a_desired = init_a self.alpha = np.exp(-DT_MDL / 2.0) self.v_desired_trajectory = np.zeros(CONTROL_N) self.a_desired_trajectory = np.zeros(CONTROL_N) self.j_desired_trajectory = np.zeros(CONTROL_N) def update(self, sm, lateral_planner): v_ego = sm['carState'].vEgo a_ego = sm['carState'].aEgo v_cruise_kph = sm['controlsState'].vCruise v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX) v_cruise = v_cruise_kph * CV.KPH_TO_MS long_control_state = sm['controlsState'].longControlState force_slow_decel = sm['controlsState'].forceDecel prev_accel_constraint = True if long_control_state == LongCtrlState.off or sm['carState'].gasPressed: self.v_desired = v_ego self.a_desired = a_ego # Smoothly changing between accel trajectory is only relevant when OP is driving prev_accel_constraint = False # Prevent divergence, smooth in current v_ego self.v_desired = self.alpha * self.v_desired + (1 - self.alpha) * v_ego self.v_desired = max(0.0, self.v_desired) accel_limits = [A_CRUISE_MIN, get_max_accel(v_ego)] if not self.cachedParams.get('jvePilot.settings.slowInCurves', 5000) == "1": accel_limits = limit_accel_in_turns(v_ego, sm['carState'].steeringAngleDeg, accel_limits, self.CP) if force_slow_decel: # if required so, force a smooth deceleration accel_limits[1] = min(accel_limits[1], AWARENESS_DECEL) accel_limits[0] = min(accel_limits[0], accel_limits[1]) # clip limits, cannot init MPC outside of bounds accel_limits[0] = min(accel_limits[0], self.a_desired + 0.05) accel_limits[1] = max(accel_limits[1], self.a_desired - 0.05) self.mpc.set_accel_limits(accel_limits[0], accel_limits[1]) self.mpc.set_cur_state(self.v_desired, self.a_desired) self.mpc.update(sm['carState'], sm['radarState'], v_cruise, prev_accel_constraint=prev_accel_constraint) self.v_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.v_solution) self.a_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC, self.mpc.a_solution) self.j_desired_trajectory = np.interp(T_IDXS[:CONTROL_N], T_IDXS_MPC[:-1], self.mpc.j_solution) # TODO counter is only needed because radar is glitchy, remove once radar is gone self.fcw = self.mpc.crash_cnt > 5 if self.fcw: cloudlog.info("FCW triggered") # Interpolate 0.05 seconds and save as starting point for next iteration a_prev = self.a_desired self.a_desired = float(interp(DT_MDL, T_IDXS[:CONTROL_N], self.a_desired_trajectory)) self.v_desired = self.v_desired + DT_MDL * (self.a_desired + a_prev) / 2.0 if lateral_planner.lateralPlan and self.cachedParams.get('jvePilot.settings.slowInCurves', 5000) == "1": curvs = list(lateral_planner.lateralPlan.curvatures) if len(curvs): # find the largest curvature in the solution and use that. curv = abs(curvs[-1]) if curv != 0: self.v_desired = float(min(self.v_desired, self.limit_speed_in_curv(sm, curv))) def publish(self, sm, pm): plan_send = messaging.new_message('longitudinalPlan') plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState']) longitudinalPlan = plan_send.longitudinalPlan longitudinalPlan.modelMonoTime = sm.logMonoTime['modelV2'] longitudinalPlan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.logMonoTime['modelV2'] longitudinalPlan.speeds = [float(x) for x in self.v_desired_trajectory] longitudinalPlan.accels = [float(x) for x in self.a_desired_trajectory] longitudinalPlan.jerks = [float(x) for x in self.j_desired_trajectory] longitudinalPlan.hasLead = sm['radarState'].leadOne.status longitudinalPlan.longitudinalPlanSource = self.mpc.source longitudinalPlan.fcw = self.fcw pm.send('longitudinalPlan', plan_send) def limit_speed_in_curv(self, sm, curv): v_ego = sm['carState'].vEgo a_y_max = 2.975 - v_ego * 0.0375 # ~1.85 @ 75mph, ~2.6 @ 25mph # drop off drop_off = self.cachedParams.get_float('jvePilot.settings.slowInCurves.speedDropOff', 5000) if drop_off != 2 and a_y_max > 0: a_y_max = np.sqrt(a_y_max) ** drop_off v_curvature = np.sqrt(a_y_max / np.clip(curv, 1e-4, None)) model_speed = np.min(v_curvature) return model_speed * self.cachedParams.get_float('jvePilot.settings.slowInCurves.speedRatio', 5000)