Пример #1
0
    def wrap_actions(self, actions):
        """
        根据action和action_args的矩阵,
        输出可以pysc2执行的Function call实例
        :param actions: action和action_args的矩阵
        :return: pysc2对应的action ID和pysc2可以执行的args
        """
        # 取出action和action的参数
        acts, args = actions[0], actions[1:]

        wrapped_actions = []
        for i, act in enumerate(acts):  #当前顺序i,action的ID act
            act_args = []
            for arg_type in FUNCTIONS[act].args:  #根据action的ID找到参数名称
                act_arg = [DEFAULT_ARGS[arg_type.name]]  #用config定义的默认参数值来初始化
                if arg_type.name in self.config.act_args:
                    act_arg = [args[self.config.arg_idx[arg_type.name]][i]]
                if is_spatial(
                        arg_type.name):  # spatial args, convert to coords
                    act_arg = [
                        act_arg[0] % self.config.sz,
                        act_arg[0] // self.config.sz
                    ]  # (y,x), fix for PySC2
                act_args.append(act_arg)
            wrapped_actions.append(FunctionCall(
                act, act_args))  #pysc2 可以执行的是这个,原本都是数据

        return wrapped_actions
Пример #2
0
    def wrap_actions(self, actions):
        acts, args = actions[0], actions[1:]

        wrapped_actions = []
        for i, act in enumerate(acts): # 对于batch中的每个act函数
            act_args = []
            for arg_type in FUNCTIONS[act].args: # 对于该动作函数的每个参数
                act_arg = [DEFAULT_ARGS[arg_type.name]] # 初始化
                if arg_type.name in self.config.act_args:
                    act_arg = [args[self.config.arg_idx[arg_type.name]][i]] # 等于bacth中对应参数的第i项(第i个样本)
                if is_spatial(arg_type.name):  # spatial args, convert to coords
                    act_arg = [act_arg[0] % self.config.sz, act_arg[0] // self.config.sz]  # (y,x), fix for PySC2
                act_args.append(act_arg)
            wrapped_actions.append(FunctionCall(act, act_args))

        return wrapped_actions
Пример #3
0
 def wrap_actions(self, actions):
     pol_mask = [torch.zeros((self.envs.num_envs)).float().to(self.device) \
                 for _ in range(1 + len(ARG_TYPES))]
     pol_mask[0].fill_(1.0)
     acts, args = actions[0], actions[1:]
     wrapped_actions = []
     for i, act in enumerate(acts):
         fn = TERRAN_FUNCTIONS[act]
         act_args = []
         for arg_type in fn.args:
             act_arg = [args[self.config.arg_idx[arg_type.name]][i]]
             pol_mask[self.config.arg_idx[arg_type.name] + 1][i] = 1.
             if arg_type.name == 'queued':
                 act_arg = [False]
             if is_spatial(
                     arg_type.name):  # spatial args, convert to coords
                 act_arg = [
                     act_arg[0] % self.config.sz,
                     act_arg[0] // self.config.sz
                 ]
             act_args.append(act_arg)
         wrapped_actions.append(FunctionCall(fn.id, act_args))
     return wrapped_actions, pol_mask