Пример #1
0
    def fit(self, x, t, batch_size, epochs, validation=None):
        #レイヤの行列を計算する
        y = np.zeros((batch_size, x.shape[1]))
        for layer in self.sequential.values():
            y = layer.fit(y)

        # バリデーションが最初からセットされているとき
        if validation != None:
            x_val = validation[0]
            t_val = validation[1]
        else:
            x_val, x = __sorting__(x, 100)
            t_val, t = __sorting__(t, 100)

        loop = int(x.shape[0] / batch_size)  # 繰り返し回数
        # メインルーチン
        for i in range(epochs):
            loss_sum = 0
            for j in range(loop):
                # 行数からbatch_sizeだけランダムに値を抽出 replace(重複)
                batch_mask = np.random.choice(x.shape[0],
                                              batch_size,
                                              replace=False)
                x_batch = x[batch_mask]  # 全データからbatch_size分データを抽出
                t_batch = t[batch_mask]
                """
                if (validation != None):
                    x_val   = x_val[batch_mask]
                    t_val   = t_val[batch_mask]
                """
                loss = self.gradient(x_batch, t_batch)  # 誤差の計算
                loss_sum += (loss / batch_size)
            loss_ave = loss_sum / loop  # 誤差の平均値の計算
            self.history['loss_ave'].append(loss_ave)  # 誤差の保存

            #---------------------------
            # validation誤差の計算
            #---------------------------
            if (validation != None):
                val_loss = self.loss(x_val, t_val)
                val_loss_ave = val_loss / x_val[0].shape[0]
                self.history['val_loss'].append(val_loss_ave)

            #---------------------------
            # 正解率の計算
            #---------------------------
            train_acc = self.accuracy(x_batch, t_batch,
                                      self.metrics_func['train'])
            acc = []
            for k in range(len(train_acc)):
                ave = np.sum(train_acc[k]) / train_acc[k].shape[0]  # 全行での平均をとる
                acc.append(ave)
            self.metrics_log['train'].append(acc)
            """
            train_acc = self.accuracy(x, t, func='r2_score') # 要素ごとの評価を行う
            train_acc_ave = np.sum(train_acc) / train_acc.shape[0] # 全行での平均をとる
            self.history['train_acc'].append(train_acc_ave) # 平均の正解率を記録する
            """
            #print('学習%d回目  --loss:%f, --val=%f, --train_acc=%f' % (i+1, self.history['loss_ave'][i], self.history['val_loss'][i], self.metrics_log['train'][i]))
            print('学習%d回目  --loss:%f, --val=%f, --train_acc=%f' %
                  (i + 1, self.history['loss_ave'][i],
                   self.history['val_loss'][i],
                   np.min(self.metrics_log['train'][i])))
            #print('学習%d回目  --loss:%f, --val=%f' % (i+1, self.history['loss_ave'][i], self.history['val_loss'][i]))

        print('loss=%f, val=%f' % (self.history['loss_ave'][epochs - 1],
                                   self.history['val_loss'][epochs - 1]))
        return self.history
Пример #2
0
    def fit(self, x, t, batch_size, epochs, validation=None, callbacks=None):
        # コールバック関数
        self.callbacks = callbacks
        #-------------------------------
        # Validation
        #-------------------------------
        if validation != None:  # バリデーションが最初からセットされているとき
            x_val = validation[0]
            t_val = validation[1]
        else:
            x = __shuffle__(x)
            t = __shuffle__(t)
            #------------------
            # Sorting
            #------------------
            # ホールドアウト法を採用
            # 教師用データと検証用データを6:4で分割
            thresh = int((x.shape[0] * 0.4))
            x_val, x = __sorting__(x, thresh)
            t_val, t = __sorting__(t, thresh)

        loop = int(x.shape[0] / batch_size)  # 繰り返し回数
        #---------------------------
        # メインルーチン
        #---------------------------
        for epoch in range(epochs):
            loss_sum = 0
            for j in range(loop):
                # 行数からbatch_sizeだけランダムに値を抽出 replace(重複)
                batch_mask = np.random.choice(x.shape[0],
                                              batch_size,
                                              replace=False)
                x_batch = x[batch_mask]  # 全データからbatch_size分データを抽出
                t_batch = t[batch_mask]

                grads = self.gradient(x_batch, t_batch)
                self.func['optimizer'].update(self.params, grads)
                #loss = self.gradient(x_batch, t_batch) # 誤差の計算
                loss_sum += (self.history['loss'] / batch_size)

            loss_ave = loss_sum / loop  # 誤差の平均値の計算
            self.history['loss_ave'].append(loss_ave)  # 誤差の保存

            #---------------------------
            # validation誤差の計算
            #---------------------------
            val_loss = self.loss(x_val, t_val)
            val_loss_ave = val_loss / x_val[0].shape[0]
            self.history['val_loss'].append(val_loss_ave)

            #---------------------------
            # 正解率の計算
            #---------------------------
            # printで値を表示するためのリスト
            prt_train_acc = []
            prt_val_acc = []
            logs = {}
            for key, List in self.logs.items():
                #metric = [x for x in self.metrics_func.keys() if x in key][0]
                metric = [x for x in self.func.keys() if x in key][0]
                if 'train' in key:
                    #acc_train = self.accuracy(x_batch, t_batch, self.metrics_func[metric])
                    acc_train = self.accuracy(x_batch, t_batch,
                                              self.func[metric])
                    List.append(acc_train)
                    prt_train_acc.append(acc_train)
                    logs[key] = acc_train
                if 'val' in key:
                    #acc_val = self.accuracy(x_val, t_val, self.metrics_func[metric])
                    acc_val = self.accuracy(x_val, t_val, self.func[metric])
                    List.append(acc_val)
                    prt_val_acc.append(acc_val)
                    logs[key] = acc_val

            #---------------------------
            # one_epoch_endコールバック
            #---------------------------
            if self.callbacks != None:
                for call in callbacks:
                    call.one_epoch_end(logs)

            #print('学習%d回目  --loss:%f, --val=%f, --train_acc=%f' % (i+1, self.history['loss_ave'][i], self.history['val_loss'][i], self.metrics_log['train'][i]))
            print('学習%d回目  --loss:%f, --val=%f, --train_acc=%f, --val_acc=%f' % \
                    (epoch+1, self.history['loss_ave'][epoch], self.history['val_loss'][epoch], np.min(prt_train_acc), np.min(prt_val_acc)))

        nb_epoch = epochs
        plt.plot(range(nb_epoch),
                 self.history['loss_ave'],
                 marker='.',
                 label='loss')
        plt.plot(range(nb_epoch),
                 self.history['val_loss'],
                 marker='.',
                 label='val_loss')
        plt.legend(loc='best', fontsize=10)
        plt.grid()
        plt.xlabel('epoch')
        plt.ylabel('loss')
        # 再描画する
        plt.pause(0.001)
        plt.show()
        print('loss=%f, val=%f' % (self.history['loss_ave'][epochs - 1],
                                   self.history['val_loss'][epochs - 1]))
        return self.history
Пример #3
0
def nn(x, t, batch_size, epochs, feature=None, validation=None):
    """
    簡単なニューラルネットワークのモデルを作成する関数

    Parameters
    ----------
    x : ndarray
        学習用データ
    t : ndarray
        教師データ
    batch_size : int
        バッチサイズ
    eopchs : int
        エポック数
    feature : int
        Feature Scalingの選択
    """       
    #-------------------------------
    # DataFeature
    #-------------------------------
    if feature != None:
        x = Datafeature(x, feature)
        t = Datafeature(t, feature)

    #-------------------------------
    # Validation
    #-------------------------------
    if validation != None:    # バリデーションが最初からセットされているとき
        x_val = validation[0]
        t_val = validation[1]
    else:
        x = __shuffle__(x)
        t = __shuffle__(t)
        x_val, x = __sorting__(x, 100)
        t_val, t = __sorting__(t, 100)

    # 学習曲線を可視化するコールバックを用意する
    higher_better_metrics = ['r2']
    visualize_cb = LearningVisualizationCallback(higher_better_metrics)
    callbacks = [
        visualize_cb,
    ]

    model = Sequential()
    model.add(Input(input_shape=x.shape[1]))
    model.add(Dense(50, activation='relu', weight_initializer='relu'))
    model.add(Dense(50, activation='relu', weight_initializer='relu'))
    #model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(50, activation='sigmoid', weight_initializer='sigmoid'))
    #model.add(Dense(t.shape[1],  activation='softmax'))
    #model.compile(loss='cross_entropy_error')
    model.add(Dense(t.shape[1], activation = 'liner'))
    model.compile(loss='mean_squared_error', metrics = ['r2', 'rsme'])

    #history=model.fit(x, t, batch_size=batch_size, epochs=epochs, validation=validation)
    history = model.fit(x, t, batch_size=batch_size,
                        epochs=epochs, validation=(x_val, t_val), callbacks=callbacks)

    # lossグラフ
    loss = history['loss_ave']
    val_loss = history['val_loss']

    nb_epoch = len(loss)
    plt.plot(range(nb_epoch), loss, marker = '.', label = 'loss')
    plt.plot(range(nb_epoch), val_loss, marker='.', label='val_loss')
    plt.legend(loc = 'best', fontsize = 10)
    plt.grid()
    plt.xlabel('epoch')
    plt.ylabel('loss')
    plt.show()
Пример #4
0
    def fit(self, x, t, batch_size, epochs, validation=None, callbacks=None):
        # コールバック関数
        """
        if callbacks != None:
            one_epoch_end = []
            for call in callbacks:
                if ('one_epoch_end' in dir(call)):
                    one_epoch_end.append(call.one_epoch_end)
        """

        #レイヤの行列を計算する
        y = np.zeros((batch_size, x.shape[1]))
        for layer in self.sequential.values():
            y = layer.fit(y)

        # バリデーションが最初からセットされているとき
        if validation != None:
            x_val = validation[0]
            t_val = validation[1]
        else:
            x = __shuffle__(x)
            t = __shuffle__(t)
            x_val, x = __sorting__(x, 100)
            t_val, t = __sorting__(t, 100)

        loop = int(x.shape[0] / batch_size)  # 繰り返し回数
        # メインルーチン
        for epoch in range(epochs):
            loss_sum = 0
            for j in range(loop):
                # 行数からbatch_sizeだけランダムに値を抽出 replace(重複)
                batch_mask = np.random.choice(x.shape[0],
                                              batch_size,
                                              replace=False)
                x_batch = x[batch_mask]  # 全データからbatch_size分データを抽出
                t_batch = t[batch_mask]

                loss = self.gradient(x_batch, t_batch)  # 誤差の計算
                loss_sum += (loss / batch_size)
            loss_ave = loss_sum / loop  # 誤差の平均値の計算
            self.history['loss_ave'].append(loss_ave)  # 誤差の保存

            #---------------------------
            # validation誤差の計算
            #---------------------------
            val_loss = self.loss(x_val, t_val)
            val_loss_ave = val_loss / x_val[0].shape[0]
            self.history['val_loss'].append(val_loss_ave)

            #---------------------------
            # 正解率の計算
            #---------------------------
            logs = {}
            # printで値を表示するためのリスト
            prt_train_acc = []
            prt_val_acc = []
            for key, List in self.logs.items():
                metric = [x for x in self.metrics_func.keys() if x in key][0]
                if 'train' in key:
                    acc = self.accuracy(x_batch, t_batch,
                                        self.metrics_func[metric])
                    List.append(acc)
                    prt_train_acc.append(acc)
                if 'val' in key:
                    acc = self.accuracy(x_val, t_val,
                                        self.metrics_func[metric])
                    List.append(acc)
                    prt_val_acc.append(acc)
                logs[key] = acc

            #---------------------------
            # one_epoch_endコールバック
            #---------------------------
            if callbacks != None:
                for call in callbacks:
                    call.one_epoch_end(epoch, logs)

            #print('学習%d回目  --loss:%f, --val=%f, --train_acc=%f' % (i+1, self.history['loss_ave'][i], self.history['val_loss'][i], self.metrics_log['train'][i]))
            print('学習%d回目  --loss:%f, --val=%f, --train_acc=%f, --val_acc=%f' % \
                    (epoch+1, self.history['loss_ave'][epoch], self.history['val_loss'][epoch], np.min(prt_train_acc), np.min(prt_val_acc)))

        print('loss=%f, val=%f' % (self.history['loss_ave'][epochs - 1],
                                   self.history['val_loss'][epochs - 1]))
        return self.history