def writeToAdvertFeed(df, table_name, engine):
    columns = list(
        pd.read_sql("select * from %s where id = '999999999'" % (table_name),
                    settings.createEngine()).columns)
    for col in columns:
        if col not in df.columns:
            df[col] = None

    functions.append_df_to_sql_table(df[columns], table_name)
    def writeToAdvertPerformanceTable(self, df, date_range):

        table_name = "advert_performance"

        columns = list(
            pd.read_sql(
                "select * from %s where clicks > 999999999" % (table_name),
                Database().createEngine()).columns)
        for col in columns:
            if col not in df.columns:
                df[col] = None

        functions.append_df_to_sql_table(df[columns], table_name)
def main(account_id):
    settings = Settings()
    Log("info", "processing ad n-grams", "", account_id)

    df = createFullDataFrame(account_id, settings)

    if functions.dfIsEmpty(df):
        return

    df = df.drop_duplicates()

    table_name = "ad_n_gram_performance"

    deleteFromTable(table_name, account_id, settings.createEngine())

    functions.append_df_to_sql_table(df, table_name)
Пример #4
0
def main(account_id):
    Log("info", "processing keyword feed", "", account_id)

    target_cpa = functions.getTargetCpa(account_id)

    table_name = "keyword_feed"

    deleteAccountDataFromTable(account_id, table_name, settings)

    feed = None
    for date_range in settings.date_ranges:
        df = getKeywords(account_id, date_range)
        df = df.loc[:, ~df.columns.duplicated()]
        # print date_range
        # print df.shape

        # to check for duplicates
        df["keyword_and_type"] = df["keyword_text"] + df["keyword_match_type"]

        if functions.dfIsEmpty(df):
            continue

        if not functions.dfIsEmpty(feed):
            feed["keyword_and_type"] = feed["keyword_text"] + feed[
                "keyword_match_type"]
            df = df[~df["keyword_and_type"].isin(feed["keyword_and_type"].
                                                 values)]

        feed = getWorstAndBestPerformers(df, feed, target_cpa)

        if functions.dfIsEmpty(feed):
            continue

        # drop duplicate columns
        # from here: https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns
        feed = feed.loc[:, ~feed.columns.duplicated()]

    if functions.dfIsEmpty(feed):
        return

    if "keyword_and_type" in feed.columns:
        del feed["keyword_and_type"]

    feed['display_from_date'] = datetime.now()

    functions.append_df_to_sql_table(feed, table_name)
Пример #5
0
def main(account_id):
    Log("info", "processing search query n-grams feed", "", account_id)

    target_cpa = functions.getTargetCpa(account_id)

    engine = settings.createEngine()

    deleteAllFromTable("search_query_n_gram_feed", account_id, engine)

    feed = None
    for date_range in settings.date_ranges:
        print(date_range)
        df = getQueryPerformance(account_id, date_range)
        df = df.loc[:, ~df.columns.duplicated()]

        print(date_range)
        print(df.shape)

        if functions.dfIsEmpty(df):
            continue

        if not functions.dfIsEmpty(feed):
            df = df[~df["n_gram"].isin(feed["n_gram"].values)]

        feed = getWorstAndBestPerformers(df, feed, target_cpa)

        if feed is None:
            continue

        # drop duplicate columns
        # from here: https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns
        feed = feed.loc[:, ~feed.columns.duplicated()]

    if functions.dfIsEmpty(feed):
        return

    table_name = "search_query_n_gram_feed"

    feed = functions.createUuid(feed)
    feed = functions.trimDfToTableColumns(feed, table_name)

    feed['display_from_date'] = datetime.now()

    functions.append_df_to_sql_table(feed, table_name)
def main(account_id):
    Log("info", "processing adgroup feed", "", account_id)

    table_name = "adgroup_feed"

    deleteFromTable(table_name, account_id)

    df = getFeedInfoAllDateRanges(account_id)

    if functions.dfIsEmpty(df):
        print("df is empty")
        deleteFromTable(table_name, account_id)
        return

    df = functions.createUuid(df)
    df = functions.trimDfToTableColumns(df, table_name)

    df['display_from_date'] = datetime.now()

    functions.append_df_to_sql_table(df, table_name)
def deleteAndWriteToAdGroupsTable(df, account_id, table_name, engine):
    functions.deleteThisAccountsDataFromTable(table_name, account_id, engine)
    functions.append_df_to_sql_table(df, table_name)
Пример #8
0
 def writeDataframeToTable(self, df, database_table_name):
     df = functions.trimDfToTableColumns(df, database_table_name)
     functions.append_df_to_sql_table(df, database_table_name)
def main(account_id):
    settings = Settings()

    deleteFromSearchQueryNGrams(settings, account_id)

    columns = [
        "id", "created_at", "updated_at", "account_id", "date_range", "n_gram",
        "n_gram_count", "show_on_graph", "ctr", "ctr_significance",
        "impressions", "clicks", "conversions", "cost", "average_cpc",
        "conversion_value", "cpa", "roas", "conversion_rate", "graph_order"
    ]

    settings = Settings()

    all_df = None
    for date_range in settings.date_ranges:

        df = dataFrameFromSearchQueryPerformanceReports(
            settings, account_id, date_range)
        df = addNGrams(df, columns)

        if functions.dfIsEmpty(df):
            continue

        df = filterAndAddColumns(df, date_range, account_id)

        # print date_range
        # print df.shape

        if functions.dfIsEmpty(df):
            continue
        # drop duplicate columns
        # from here: https://stackoverflow.com/questions/14984119/python-pandas-remove-duplicate-columns
        df = df.loc[:, ~df.columns.duplicated()]

        if functions.dfIsEmpty(df):
            continue

        if functions.dfIsEmpty(all_df):
            all_df = df.copy()
        else:
            all_df = all_df.append(df.copy())

    if functions.dfIsEmpty(all_df):
        return

    # print search_query_performance_df.head()

    # serving too many rows will cause php memory issues (and issues with the client)
    # just serve the first X rows, ordered by cost
    rowsToServe = 2000
    all_df = all_df.sort_values("cost", ascending=False).head(rowsToServe)

    # then sort by ctr and search_queryd the graph elements (means the n-grams must be in the top 1000 spenders to be in the graph)
    all_df = all_df.sort_values(["ctr", "conversions", "clicks", "cost"],
                                ascending=False).reset_index(drop=True)
    all_df.loc[all_df.index == 0, 'show_on_graph'] = True
    all_df.loc[all_df.index == 1, 'show_on_graph'] = True
    all_df.loc[all_df.index == 2, 'show_on_graph'] = True
    all_df.loc[all_df.index == 0, 'graph_order'] = 1
    all_df.loc[all_df.index == 1, 'graph_order'] = 2
    all_df.loc[all_df.index == 2, 'graph_order'] = 3

    # finally fill NAs and append to the table
    all_df = all_df[columns].fillna(0)

    functions.append_df_to_sql_table(all_df, "search_query_n_gram_performance")