Пример #1
0
def predict_identity(network, x):
    w1, w2, w3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, w1) + b1
    z1 = identity_function(a1)
    a2 = np.dot(z1, w2) + b2
    z2 = identity_function(a2)
    a3 = np.dot(z2, w3) + b3
    y = softmax(a3)

    return y
Пример #2
0
def forword(network, x):
    W1, W2, W3 = network['W1'], network['W2'], network['W3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, W1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, W2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2, W3) + b3
    y = identity_function(a3)

    return y
Пример #3
0
def forward(network, x):
    w1, w2, w3 = network['w1'], network['w2'], network['w3']
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, w1) + b1
    z1 = sigmoid(a1)
    a2 = np.dot(z1, w2) + b2
    z2 = sigmoid(a2)
    a3 = np.dot(z2, w3) + b3
    y = identity_function(a3)
    
    return y
def forward(network, x):
    '''前向传播'''
    W1, W2, W3 = network['W1'], network['W2'], network['W3']  #从字典取出参数
    b1, b2, b3 = network['b1'], network['b2'], network['b3']

    a1 = np.dot(x, W1) + b1  #利用点积进行从输入层到第1层的信号传递
    z1 = sigmoid(a1)  #使用激活函数转换第1层的输出
    a2 = np.dot(z1, W2) + b2  #同上
    z2 = sigmoid(a2)  #同上
    a3 = np.dot(z2, W3) + b3
    y = identity_function(a3)  #这里使用恒等函数,只是为了和上面保持格式一致

    return y  #返回网络的计算结果
Пример #5
0
sys.path.append(os.curdir)

import numpy as np

from common.functions import sigmoid, identity_function

X = np.array([1.0, 0.5])
W1 = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
B1 = np.array([0.1, 0.2, 0.3])

A1 = np.dot(X, W1) + B1
Z1 = sigmoid(A1)

print(A1)
print(Z1)

W2 = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
B2 = np.array([0.1, 0.2])

A2 = np.dot(Z1, W2) + B2
Z2 = sigmoid(A2)

W3 = np.array([[0.1, 0.3], [0.2, 0.4]])
B3 = np.array([0.1, 0.2])

A3 = np.dot(Z2, W3) + B3

Y = identity_function(A3)

print(Y)