Пример #1
0
    def __init__(self, num_enbs, num_states, num_obs, A, B, V, W, P=None):
        super(EnsembleKalmanFilter, self).__init__(num_states, num_obs, 
                                                   A, B, V, W, P)
        self.weights = init_weights(num_enbs)
        self.num_enbs = num_enbs

        self.cov_type = None
Пример #2
0
    def __init__(self, num_enbs, params):
        self.num_enbs = num_enbs
        super(EnsembleSIR, self).__init__(params)

        del self.alpha
        del self.beta

        self.current_Is = uniform(0, self.i * 2, num_enbs)
        self.current_Ss = ones(num_enbs) - self.current_Is
        self.alphas = uniform(0., 1, num_enbs)
        self.betas = uniform(0., 1, num_enbs)

        self.weights = [init_weights(num_enbs)] # matrix-like

        for i in range(num_enbs):
            if self.alphas[i] < self.betas[i]:
                self.alphas[i], self.betas[i] = self.betas[i], self.alphas[i]  

        self.Is = [self.current_Is.tolist()]
        self.Ss = [self.current_Ss.tolist()]
Пример #3
0
    def __init__(self, num_enbs, params):
        self.num_enbs = num_enbs
        super(ParticleSIR, self).__init__(params)

        del self.alpha
        del self.beta
        
        self.current_Is = uniform(0, self.i * 2, num_enbs)
        self.current_Ss = ones(num_enbs) - self.current_Is
        self.alphas = uniform(0., 1, num_enbs)
        self.betas = uniform(0., 1, num_enbs)

        self.weights = [init_weights(num_enbs)] # matrix-like

        for i in range(num_enbs):
            if self.alphas[i] < self.betas[i]:
                self.alphas[i], self.betas[i] = self.betas[i], self.alphas[i]  

        self.Is = [self.current_Is.tolist()]
        self.Ss = [self.current_Ss.tolist()]
Пример #4
0
    def __init__(self, num_enbs, params):
        self.num_enbs = num_enbs
        super(EnsembleAdjustmentSIR, self).__init__(params)

        del self.alpha
        del self.beta

        self.inflate = 1.001
        self.current_Is = uniform(0, self.i * 2, num_enbs)
        self.current_Ss = ones(num_enbs) - self.current_Is
        self.alphas = uniform(0, .5, num_enbs)
        self.betas = uniform(0, .5, num_enbs)

        self.weights = [init_weights(num_enbs)]  # matrix-like

        for i in range(num_enbs):
            if self.alphas[i] < self.betas[i]:
                self.alphas[i], self.betas[i] = self.betas[i], self.alphas[i]
        self.Is = [self.current_Is.tolist()]
        self.Ss = [self.current_Ss.tolist()]
Пример #5
0
    def __init__(self, num_part, params={}):
        self.num_part = num_part
        self.weights = init_weights(num_part)

        self.x_prior = None
Пример #6
0
 def __init__(self, num_part, params={}):
     self.num_part = num_part
     self.weights = init_weights(num_part)
     
     self.x_prior = None