Пример #1
0
    def data_mc_ratio(ratio_groups, var, cut, **kwargs):
        ColorStyleGen.reset()
        samples_mc = ratio_groups.keys()
        ratio_groups["data"] = ["SingleMuAB", "SingleMuC", "SingleMuD"]
        plot_name = kwargs.get("name", "plot")
        samples_d = dict()
        for name, group in ratio_groups.items():
            samples_d[name] = [
                metadata_iso.get_histogram(sample_name,
                                           var,
                                           cut_str=cut.cut_str,
                                           weight=None)
                for sample_name in group
            ]

            if name != "data":
                for hist in samples_d[name]:
                    hist.normalize_lumi(lumi_total)
            merged = merge_hists(samples_d[name], name)
            samples_d[name] = merged
            samples_d[name].pretty_name = name

        for name in samples_d.keys():
            if name != "data":
                samples_d[name].hist.Divide(samples_d["data"].hist)
        samples_d["data"].hist.Divide(samples_d["data"].hist)

        canv = plot_hists(samples_d.values(),
                          styles={"data": Styling.style["data"]},
                          **kwargs)
        leg = legend([r for r in reversed(samples_d.values())],
                     styles=["p", "f"])
        canv.SaveAs(plot_name + ".pdf")
        return canv, leg
Пример #2
0
    def mc_amount(cut, weight, lumi, ref=None):
        histsD = dict()
        for samp in samples_mc:
            histsD[samp.name] = samp.drawHistogram("eta_lj",
                                                   str(cut),
                                                   weight=weight,
                                                   plot_range=[100, -5, 5])

        for name, hist in histsD.items():
            hist.normalize_lumi(lumi)
        for name, hist in histsD.items():
            histsD[name] = hist.hist
        merge_cmd = copy.deepcopy(merge_cmds)
        merge_cmd["QCD (MC)"] = ["QCDMu"]
        merge_cmd["t#bar{t} incl."] = ["TTJets_MassiveBinDECAY"]
        merge_cmd.pop("data")
        merged_hists = merge_hists(histsD, merge_cmd)

        interesting = [
            "t#bar{t}", "t#bar{t} incl.", "W(#rightarrow l #nu) + jets",
            "QCD (MC)", "t-channel"
        ]

        for i in interesting:
            r = 0.0
            r0 = 0.0
            if ref and i in ref.keys():
                r0 = ref[i]
                r = 100.0 * merged_hists[i].Integral() / float(r0)
            print "%s | %d | %d | %.2f %%" % (i, merged_hists[i].Integral(),
                                              r0, r)
Пример #3
0
    def data_mc_ratio(ratio_groups, var, cut, **kwargs):
        ColorStyleGen.reset()
        samples_mc = ratio_groups.keys()
        ratio_groups["data"] = ["SingleMuAB", "SingleMuC", "SingleMuD"]
        plot_name = kwargs.get("name", "plot")
        samples_d = dict()
        for name, group in ratio_groups.items():
            samples_d[name] = [
                metadata_iso.get_histogram(sample_name, var, cut_str=cut.cut_str, weight=None) for
                sample_name in group
            ]

            if name != "data":
                for hist in samples_d[name]:
                    hist.normalize_lumi(lumi_total)
            merged = merge_hists(samples_d[name], name)
            samples_d[name] = merged
            samples_d[name].pretty_name = name

        for name in samples_d.keys():
            if name != "data":
                samples_d[name].hist.Divide(samples_d["data"].hist)
        samples_d["data"].hist.Divide(samples_d["data"].hist)

        canv = plot_hists(
            samples_d.values(),
            styles={"data": Styling.style["data"]},
            **kwargs
        )
        leg = legend([r for r in reversed(samples_d.values())], styles=["p", "f"])
        canv.SaveAs(plot_name + ".pdf")
        return canv, leg
Пример #4
0
def plot_hists_stacked(hist_groups, **kwargs):
    import uuid
    stacks = dict()
    styles = kwargs.get("styles")
    draw_styles = kwargs.get("draw_styles", {})
    do_log_y = kwargs.get("do_log_y", False)
    title = kwargs.get("title", "TITLE")
    x_label = kwargs.get("x_label", "XLABEL")
    name = kwargs.get("name", "NAME_%s" % uuid.uuid1())
    min_bin = kwargs.get("min_bin", 10)

    canv = ROOT.TCanvas(name, name)
    canv.SetWindowSize(1000, 1000)
    canv.SetCanvasSize(1000, 1000)
    for name, group in hist_groups.items():
        stacks[name] = ROOT.THStack(name, name)
        print name
        for hist in group:
            print hist.name

            if not styles:
                (color, style) = ColorStyleGen.next()
                hist.hist.SetLineColor(color)
                hist.hist.SetLineWidth(2)
                hist.hist.SetFillColor(color)
                hist.hist.SetFillStyle(style)
            else:
                styles[name](hist)
            stacks[name].Add(hist.hist)

    max_bin = get_max_bin(stacks.values())
    for name, stack in stacks.items():
        stack.Draw()
    canv.Draw()

    first = True
    for name, stack in stacks.items():
        if name in draw_styles.keys():
            drawcmd = draw_styles[name]
        else:
            drawcmd = "BAR HIST goff"
        if not first:
            drawcmd += " SAME"
        stack.Draw(drawcmd)
        if first:
            stack.SetMaximum(1.8 * max_bin)
            if do_log_y:
                stack.SetMinimum(min_bin)
            stack.SetTitle(title)
            stack.GetXaxis().SetTitle(x_label)

        first = False
    if do_log_y:
        canv.SetLogy()
    return canv, stacks
Пример #5
0
def plot_hists_stacked(hist_groups, **kwargs):
    import uuid
    stacks = dict()
    styles = kwargs.get("styles")
    draw_styles = kwargs.get("draw_styles", {})
    do_log_y = kwargs.get("do_log_y", False)
    title = kwargs.get("title", "TITLE")
    x_label = kwargs.get("x_label", "XLABEL")
    name = kwargs.get("name", "NAME_%s" % uuid.uuid1())
    min_bin = kwargs.get("min_bin", 10)

    canv = ROOT.TCanvas(name, name)
    canv.SetWindowSize(1000,1000)
    canv.SetCanvasSize(1000,1000)
    for name, group in hist_groups.items():
        stacks[name] = ROOT.THStack(name, name)
        print name
        for hist in group:
            print hist.name

            if not styles:
                (color, style) = ColorStyleGen.next()
                hist.hist.SetLineColor(color)
                hist.hist.SetLineWidth(2)
                hist.hist.SetFillColor(color)
                hist.hist.SetFillStyle(style)
            else:
                styles[name](hist)
            stacks[name].Add(hist.hist)

    max_bin = get_max_bin(stacks.values())
    for name, stack in stacks.items():
        stack.Draw()
    canv.Draw()

    first = True
    for name, stack in stacks.items():
        if name in draw_styles.keys():
            drawcmd = draw_styles[name]
        else:
            drawcmd = "BAR HIST goff"
        if not first:
            drawcmd += " SAME"
        stack.Draw(drawcmd)
        if first:
            stack.SetMaximum(1.8*max_bin)
            if do_log_y:
                stack.SetMinimum(min_bin)
            stack.SetTitle(title)
            stack.GetXaxis().SetTitle(x_label)

        first = False
    if do_log_y:
        canv.SetLogy()
    return canv, stacks
Пример #6
0
def merge_hists_g(hists_d, merge_groups=g_merge_cmd):
    out_d = dict()
    for merge_name, items in merge_groups.items():
        hist = hists_d[items[0]].hist.Clone()
        for item in items[1:]:
            hist.Add(hists_d[item].hist)

        out_d[merge_name] = Histogram()
        out_d[merge_name].setHist(hist, sample_name=hists_d[items[0]].sample_name, var=hists_d[items[0]].var, cut=hists_d[items[0]].cut)
        integral, err = out_d[merge_name].calc_int_err()
        out_d[merge_name].pretty_name = "%s : %.0f #pm %0.f" % (merge_name, integral, err)
    return out_d
Пример #7
0
def merge_hists_g(hists_d, merge_groups=g_merge_cmd):
    out_d = dict()
    for merge_name, items in merge_groups.items():
        hist = hists_d[items[0]].hist.Clone()
        for item in items[1:]:
            hist.Add(hists_d[item].hist)

        out_d[merge_name] = Histogram()
        out_d[merge_name].setHist(hist,
                                  sample_name=hists_d[items[0]].sample_name,
                                  var=hists_d[items[0]].var,
                                  cut=hists_d[items[0]].cut)
        integral, err = out_d[merge_name].calc_int_err()
        out_d[merge_name].pretty_name = "%s : %.0f #pm %0.f" % (merge_name,
                                                                integral, err)
    return out_d
Пример #8
0
    def mc_amount(cut, weight, lumi, ref=None):
        histsD = dict()
        for samp in samples_mc:
            histsD[samp.name] = samp.drawHistogram("eta_lj", str(cut), weight=weight, plot_range=[100,-5,5])

        for name, hist in histsD.items():
            hist.normalize_lumi(lumi)
        for name, hist in histsD.items():
            histsD[name] = hist.hist
        merge_cmd = copy.deepcopy(merge_cmds)
        merge_cmd["QCD (MC)"] = ["QCDMu"]
        merge_cmd["t#bar{t} incl."] = ["TTJets_MassiveBinDECAY"]
        merge_cmd.pop("data")
        merged_hists = merge_hists(histsD, merge_cmd)

        interesting = ["t#bar{t}", "t#bar{t} incl.", "W(#rightarrow l #nu) + jets", "QCD (MC)", "t-channel"]

        for i in interesting:
            r = 0.0
            r0 = 0.0
            if ref and i in ref.keys():
                r0 = ref[i]
                r = 100.0*merged_hists[i].Integral() / float(r0)
            print "%s | %d | %d | %.2f %%" % (i, merged_hists[i].Integral(), r0, r)
Пример #9
0
    n_true.Scale(1.0/sum(xs_s))
    n_tagged.Scale(1.0/sum(xs_s))

    #print "int_true=%.2f, int_tagged=%.2f" % (n_true.Integral(), n_tagged.Integral())
    div = n_tagged.Clone("eff_%s" % flavour)
    div.Divide(n_true)
    #print "div=%.2f" % div.Integral()
    return div

if __name__=="__main__":
    from glob import glob
    from common.utils import get_sample_dict
    import os
    import sys

    samples_d = dict()
    samples_d["ttbar"] = ["TTJets_FullLept", "TTJets_SemiLept"]
    samples_d["wjets"] = ["W1Jets_exclusive", "W2Jets_exclusive", "W3Jets_exclusive", "W4Jets_exclusive"]
    samples_d["t-channel"] = ["T_t_ToLeptons", "Tbar_t_ToLeptons"]

    sample_name = sys.argv[1]
    out_dir = "b_eff_plots/"
    import os
    if not os.path.exists(out_dir):
        os.mkdir(out_dir)
    axis = sys.argv[2]
    if axis == "x":
        xlab = "p_{T,q}"
    elif axis == "y":
        xlab = "|#eta_{q}|"
    else:
Пример #10
0
        interesting = ["t#bar{t}", "t#bar{t} incl.", "W(#rightarrow l #nu) + jets", "QCD (MC)", "t-channel"]

        for i in interesting:
            r = 0.0
            r0 = 0.0
            if ref and i in ref.keys():
                r0 = ref[i]
                r = 100.0*merged_hists[i].Integral() / float(r0)
            print "%s | %d | %d | %.2f %%" % (i, merged_hists[i].Integral(), r0, r)


    weight = "pu_weight*muon_IDWeight*muon_IsoWeight"
    doCutFlow = True
    if doCutFlow:
        print "1 iso mu, 0 veto mu/ele"
        ref = dict()
        ref["t#bar{t}"] = 261429
        ref["t#bar{t} incl."] = ref["t#bar{t}"]
        ref["W(#rightarrow l #nu) + jets"] = 47758738
        ref["QCD (MC)"] = 1873957
        ref["t-channel"] = 54769
        previous = Cuts.hlt_isomu * Cuts.one_muon * Cuts.lepton_veto
        mc_amount(previous, weight, 12210, ref=ref)
        print

        print "2 jets"
        ref = dict()
        ref["t#bar{t}"] = 78201
        ref["t#bar{t} incl."] = ref["t#bar{t}"]
        ref["W(#rightarrow l #nu) + jets"] = 921051
        ref["QCD (MC)"] = 67463
Пример #11
0
    def stack_plot(var, cut, weight=None, **kwargs):
        qcd_weight = kwargs.get("qcd_weight", None)
        skip_samples = kwargs.get("skip_samples", [])
        doDataDrivenQCD = kwargs.get("doDataDrivenQCD", True)

        hists_mc = [
            metadata_iso.get_histogram(sample_name,
                                       var,
                                       cut_str=cut.cut_str,
                                       weight=weight)
            for sample_name in mc_sample_names
        ]

        hists_qcd_iso = [
            metadata_iso.get_histogram(sample_name,
                                       var,
                                       cut_str=cut.cut_str,
                                       weight=qcd_weight)
            for sample_name in qcd_sample_names
        ]
        if doDataDrivenQCD:
            hists_data_antiiso = [
                metadata_antiiso.get_histogram(sample_name,
                                               var,
                                               cut_str=cut.cut_str,
                                               weight=None)
                for sample_name in data_sample_names
            ]

        hists_d = dict()
        for hist in hists_mc:
            hists_d[hist.sample_name] = hist

        if not doDataDrivenQCD:
            for hist in hists_qcd_iso:
                hists_d[hist.sample_name] = hist
#        for hist in hists_mc:
#            if hist.sample_name in mc_sample_titles.keys():
#                hist.pretty_name = mc_sample_titles[hist.sample_name]
#            else:
#                hist.pretty_name = hist.sample_name

        hists_data = [
            metadata_iso.get_histogram(sample_name,
                                       var,
                                       cut_str=cut.cut_str,
                                       weight=None)
            for sample_name in data_sample_names
        ]
        for hist in hists_data:
            hists_d[hist.sample_name] = hist

        for hist in hists_data:
            hist.pretty_name = "SingleMu"

        stack_group = dict()
        stack_group["mc"] = hists_mc
        #stack_group["data"] = hists_data
        stack_group["data"] = [hists_data[0]]
        for hist in stack_group["mc"]:
            hist.normalize_lumi(lumi_total)
        for hist in hists_qcd_iso:
            hist.normalize_lumi(lumi_total)

        merge_cmd = dict()
        merge_cmd["data"] = ["SingleMuAB", "SingleMuC", "SingleMuD"]
        merge_cmd["diboson"] = ["WW", "WZ", "ZZ"]
        merge_cmd["DY-jets"] = ["DYJets"]
        merge_cmd["s-channel"] = ["T_s", "Tbar_s"]
        merge_cmd["tW-channel"] = ["T_tW", "Tbar_tW"]
        merge_cmd["t#bar{t}"] = ["TTJets_FullLept", "TTJets_SemiLept"]
        merge_cmd["W+jets"] = [
            "W1Jets_exclusive", "W2Jets_exclusive", "W3Jets_exclusive",
            "W4Jets_exclusive"
        ]
        #merge_cmd["W+jets"] = ["WJets_inclusive"]
        merge_cmd["t-channel"] = ["T_t", "Tbar_t"]
        if not doDataDrivenQCD:
            merge_cmd["QCD (MC)"] = ["QCDMu"]

        for sample in skip_samples:
            if sample in merge_cmd.keys():
                merge_cmd.pop(sample)

        merged_hists = merge_hists_g(hists_d, merge_cmd)
        if doDataDrivenQCD:
            hist_data_antiiso = merge_hists(hists_data_antiiso, "data_antiiso")
            hist_qcd_iso = merge_hists(hists_qcd_iso, "qcd_iso")
            hist_data_antiiso.normalize(hist_qcd_iso.hist.Integral())
            print hist_data_antiiso.hist.Integral()
            hist_data_antiiso.sample_name = "QCDMu"
            hist_data_antiiso.pretty_name = "QCD (dd.)"

        #for hist in hists_data[1:]:
        #    stack_group["data"][0].hist.Add(hist.hist)

        stack_d = dict()
        if doDataDrivenQCD:
            stack_d["mc"] = [hist_data_antiiso]
        else:
            stack_d["mc"] = []
        stack_d["mc"] += [
            merged_hists[name] for name in merged_hists.keys()
            if name != "data"
        ]
        stack_d["data"] = [merged_hists["data"]]
        canv, stacks = plot_hists_stacked(stack_d,
                                          styles=Styling.style,
                                          draw_styles={"data": "E1"},
                                          **kwargs)
        #canvas_margin(canv, side="R", margin=0.3)
        #        leg_hists = ([hists_data[0]] +
        #            [hists_d["T_t"]] +
        #            [hists_d["TTJets_FullLept"]] +
        #            [hists_d["W1Jets_exclusive"]]  +
        #            [hists_d["T_tW"]] +
        #            [hists_d["T_s"]]  +
        #            [hists_d["WW"]] +
        #            [hists_d["QCDMu"]])
        stack_d["mc"].reverse()
        leg = legend(stack_d["data"] + stack_d["mc"], styles=["p", "f"])
        text = lumi_textbox(lumi=lumi_total)
        canv.SaveAs(canv.GetName() + ".pdf")
Пример #12
0

def lumi_textbox(lumi=10.435, pos="top-center"):
    if pos == "top-center":
        coords = [0.25, 0.73, 0.71, 0.88]
    text = ROOT.TPaveText(coords[0], coords[1], coords[2], coords[3], "NDC")
    text.AddText("CMS preliminary #sqrt{s} = 8 TeV, #int L dt = %.1f fb^{-1}" %
                 (float(lumi) / 1000.0))
    text.SetShadowColor(ROOT.kWhite)
    text.SetLineColor(ROOT.kWhite)
    text.SetFillColor(ROOT.kWhite)
    text.Draw()
    return text


g_merge_cmd = dict()
g_merge_cmd["data"] = ["SingleMuAB", "SingleMuC", "SingleMuD"]
g_merge_cmd["diboson"] = ["WW", "WZ", "ZZ"]
g_merge_cmd["DY-jets"] = ["DYJets"]
g_merge_cmd["s-channel"] = ["T_s", "Tbar_s"]
g_merge_cmd["tW-channel"] = ["T_tW", "Tbar_tW"]
g_merge_cmd["t#bar{t}"] = ["TTJets_FullLept", "TTJets_SemiLept"]
g_merge_cmd["W+jets"] = [
    "W1Jets_exclusive", "W2Jets_exclusive", "W3Jets_exclusive",
    "W4Jets_exclusive"
]
#g_merge_cmd["W+jets"] = ["WJets_inclusive"]
g_merge_cmd["t-channel"] = ["T_t", "Tbar_t"]


def merge_hists_g(hists_d, merge_groups=g_merge_cmd):
Пример #13
0
    def stack_plot(var, cut, weight=None, **kwargs):
        qcd_weight = kwargs.get("qcd_weight", None)
        skip_samples = kwargs.get("skip_samples", [])
        doDataDrivenQCD = kwargs.get("doDataDrivenQCD", True)

        hists_mc = [metadata_iso.get_histogram(sample_name, var, cut_str=cut.cut_str, weight=weight) for sample_name in mc_sample_names]

        hists_qcd_iso = [metadata_iso.get_histogram(sample_name, var, cut_str=cut.cut_str, weight=qcd_weight) for sample_name in qcd_sample_names]
        if doDataDrivenQCD:
            hists_data_antiiso = [metadata_antiiso.get_histogram(sample_name, var, cut_str=cut.cut_str, weight=None) for sample_name in data_sample_names]

        hists_d = dict()
        for hist in hists_mc:
            hists_d[hist.sample_name] = hist

        if not doDataDrivenQCD:
            for hist in hists_qcd_iso:
                hists_d[hist.sample_name] = hist
#        for hist in hists_mc:
#            if hist.sample_name in mc_sample_titles.keys():
#                hist.pretty_name = mc_sample_titles[hist.sample_name]
#            else:
#                hist.pretty_name = hist.sample_name

        hists_data = [metadata_iso.get_histogram(sample_name, var, cut_str=cut.cut_str, weight=None) for sample_name in data_sample_names]
        for hist in hists_data:
            hists_d[hist.sample_name] = hist

        for hist in hists_data:
            hist.pretty_name = "SingleMu"

        stack_group = dict()
        stack_group["mc"] = hists_mc
        #stack_group["data"] = hists_data
        stack_group["data"] = [hists_data[0]]
        for hist in stack_group["mc"]:
            hist.normalize_lumi(lumi_total)
        for hist in hists_qcd_iso:
            hist.normalize_lumi(lumi_total)

        merge_cmd = dict()
        merge_cmd["data"] = ["SingleMuAB", "SingleMuC", "SingleMuD"]
        merge_cmd["diboson"] = ["WW", "WZ", "ZZ"]
        merge_cmd["DY-jets"] = ["DYJets"]
        merge_cmd["s-channel"] = ["T_s", "Tbar_s"]
        merge_cmd["tW-channel"] = ["T_tW", "Tbar_tW"]
        merge_cmd["t#bar{t}"] = ["TTJets_FullLept", "TTJets_SemiLept"]
        merge_cmd["W+jets"] = ["W1Jets_exclusive", "W2Jets_exclusive", "W3Jets_exclusive", "W4Jets_exclusive"]
        #merge_cmd["W+jets"] = ["WJets_inclusive"]
        merge_cmd["t-channel"] = ["T_t", "Tbar_t"]
        if not doDataDrivenQCD:
            merge_cmd["QCD (MC)"] = ["QCDMu"]

        for sample in skip_samples:
            if sample in merge_cmd.keys():
                merge_cmd.pop(sample)

        merged_hists = merge_hists_g(hists_d, merge_cmd)
        if doDataDrivenQCD:
            hist_data_antiiso = merge_hists(hists_data_antiiso, "data_antiiso")
            hist_qcd_iso = merge_hists(hists_qcd_iso, "qcd_iso")
            hist_data_antiiso.normalize(hist_qcd_iso.hist.Integral())
            print hist_data_antiiso.hist.Integral()
            hist_data_antiiso.sample_name = "QCDMu"
            hist_data_antiiso.pretty_name = "QCD (dd.)"

        #for hist in hists_data[1:]:
        #    stack_group["data"][0].hist.Add(hist.hist)

        stack_d = dict()
        if doDataDrivenQCD:
            stack_d["mc"] = [hist_data_antiiso]
        else:
            stack_d["mc"] = []
        stack_d["mc"] += [merged_hists[name] for name in merged_hists.keys() if name!="data"]
        stack_d["data"] = [merged_hists["data"]]
        canv, stacks = plot_hists_stacked(
            stack_d,
            styles=Styling.style, draw_styles={"data": "E1"}, **kwargs
        )
        #canvas_margin(canv, side="R", margin=0.3)
#        leg_hists = ([hists_data[0]] +
#            [hists_d["T_t"]] +
#            [hists_d["TTJets_FullLept"]] +
#            [hists_d["W1Jets_exclusive"]]  +
#            [hists_d["T_tW"]] +
#            [hists_d["T_s"]]  +
#            [hists_d["WW"]] +
#            [hists_d["QCDMu"]])
        stack_d["mc"].reverse()
        leg = legend(stack_d["data"] + stack_d["mc"], styles=["p", "f"])
        text = lumi_textbox(lumi=lumi_total)
        canv.SaveAs(canv.GetName() + ".pdf")
Пример #14
0
    if do_log_y:
        canv.SetLogy()
    return canv, stacks

def lumi_textbox(lumi=10.435, pos="top-center"):
    if pos=="top-center":
        coords = [0.25, 0.73, 0.71, 0.88]
    text = ROOT.TPaveText(coords[0], coords[1], coords[2], coords[3], "NDC")
    text.AddText("CMS preliminary #sqrt{s} = 8 TeV, #int L dt = %.1f fb^{-1}" % (float(lumi)/1000.0))
    text.SetShadowColor(ROOT.kWhite)
    text.SetLineColor(ROOT.kWhite)
    text.SetFillColor(ROOT.kWhite)
    text.Draw()
    return text

g_merge_cmd = dict()
g_merge_cmd["data"] = ["SingleMuAB", "SingleMuC", "SingleMuD"]
g_merge_cmd["diboson"] = ["WW", "WZ", "ZZ"]
g_merge_cmd["DY-jets"] = ["DYJets"]
g_merge_cmd["s-channel"] = ["T_s", "Tbar_s"]
g_merge_cmd["tW-channel"] = ["T_tW", "Tbar_tW"]
g_merge_cmd["t#bar{t}"] = ["TTJets_FullLept", "TTJets_SemiLept"]
g_merge_cmd["W+jets"] = ["W1Jets_exclusive", "W2Jets_exclusive", "W3Jets_exclusive", "W4Jets_exclusive"]
#g_merge_cmd["W+jets"] = ["WJets_inclusive"]
g_merge_cmd["t-channel"] = ["T_t", "Tbar_t"]


def merge_hists_g(hists_d, merge_groups=g_merge_cmd):
    out_d = dict()
    for merge_name, items in merge_groups.items():
        hist = hists_d[items[0]].hist.Clone()
Пример #15
0
        ]

        for i in interesting:
            r = 0.0
            r0 = 0.0
            if ref and i in ref.keys():
                r0 = ref[i]
                r = 100.0 * merged_hists[i].Integral() / float(r0)
            print "%s | %d | %d | %.2f %%" % (i, merged_hists[i].Integral(),
                                              r0, r)

    weight = "pu_weight*muon_IDWeight*muon_IsoWeight"
    doCutFlow = True
    if doCutFlow:
        print "1 iso mu, 0 veto mu/ele"
        ref = dict()
        ref["t#bar{t}"] = 261429
        ref["t#bar{t} incl."] = ref["t#bar{t}"]
        ref["W(#rightarrow l #nu) + jets"] = 47758738
        ref["QCD (MC)"] = 1873957
        ref["t-channel"] = 54769
        previous = Cuts.hlt_isomu * Cuts.one_muon * Cuts.lepton_veto
        mc_amount(previous, weight, 12210, ref=ref)
        print

        print "2 jets"
        ref = dict()
        ref["t#bar{t}"] = 78201
        ref["t#bar{t} incl."] = ref["t#bar{t}"]
        ref["W(#rightarrow l #nu) + jets"] = 921051
        ref["QCD (MC)"] = 67463