Пример #1
0
def plannerd_thread(sm=None, pm=None, arne_sm=None):
    gc.disable()

    # start the loop
    set_realtime_priority(52)

    cloudlog.info("plannerd is waiting for CarParams")
    CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
    cloudlog.info("plannerd got CarParams: %s", CP.carName)

    PL = Planner(CP)
    PP = PathPlanner(CP)

    VM = VehicleModel(CP)

    if sm is None:
        sm = messaging.SubMaster([
            'carState', 'controlsState', 'radarState', 'model',
            'liveParameters', 'liveMapData'
        ])
    if arne_sm is None:
        arne_sm = messaging_arne.SubMaster(
            ['arne182Status', 'latControl', 'modelLongButton'])
    if pm is None:
        pm = messaging.PubMaster(
            ['plan', 'liveLongitudinalMpc', 'pathPlan', 'liveMpc'])

    sm['liveParameters'].valid = True
    sm['liveParameters'].sensorValid = True
    sm['liveParameters'].steerRatio = CP.steerRatio
    sm['liveParameters'].stiffnessFactor = 1.0

    while True:
        sm.update()
        arne_sm.update(0)

        if sm.updated['model']:
            PP.update(sm, pm, CP, VM)
        if sm.updated['radarState']:
            PL.update(sm, pm, CP, VM, PP, arne_sm)
Пример #2
0
def plannerd_thread(sm=None, pm=None):
    gc.disable()

    # start the loop
    set_realtime_priority(52)

    cloudlog.info("plannerd is waiting for CarParams")
    CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
    cloudlog.info("plannerd got CarParams: %s", CP.carName)

    PL = Planner(CP)
    PP = PathPlanner(CP)

    VM = VehicleModel(CP)

    if sm is None:
        sm = messaging.SubMaster([
            'carState', 'controlsState', 'radarState', 'model',
            'liveParameters', 'dragonConf'
        ])

    if pm is None:
        pm = messaging.PubMaster(
            ['plan', 'liveLongitudinalMpc', 'pathPlan', 'liveMpc'])

    sm['liveParameters'].valid = True
    sm['liveParameters'].sensorValid = True
    sm['liveParameters'].steerRatio = CP.steerRatio
    sm['liveParameters'].stiffnessFactor = 1.0

    sm['dragonConf'].dpSlowOnCurve = False
    sm['dragonConf'].dpAccelProfile = 0

    while True:
        sm.update()

        if sm.updated['model']:
            PP.update(sm, pm, CP, VM)
        if sm.updated['radarState']:
            PL.update(sm, pm, CP, VM, PP)
Пример #3
0
def dmonitoringd_thread(sm=None, pm=None):
  gc.disable()
  set_realtime_priority(2)

  if pm is None:
    pm = messaging.PubMaster(['driverMonitoringState'])

  if sm is None:
    sm = messaging.SubMaster(['driverState', 'liveCalibration', 'carState', 'controlsState', 'modelV2'], poll=['driverState'])

  driver_status = DriverStatus(rhd=Params().get_bool("IsRHD"))

  sm['liveCalibration'].calStatus = Calibration.INVALID
  sm['liveCalibration'].rpyCalib = [0, 0, 0]
  sm['carState'].buttonEvents = []
  sm['carState'].standstill = True

  v_cruise_last = 0
  driver_engaged = False

  # 10Hz <- dmonitoringmodeld
  while True:
    sm.update()

    if not sm.updated['driverState']:
      continue

    # Get interaction
    if sm.updated['carState']:
      v_cruise = sm['carState'].cruiseState.speed
      driver_engaged = len(sm['carState'].buttonEvents) > 0 or \
                        v_cruise != v_cruise_last or \
                        sm['carState'].steeringPressed or \
                        sm['carState'].gasPressed
      v_cruise_last = v_cruise

    if sm.updated['modelV2']:
      driver_status.set_policy(sm['modelV2'], sm['carState'].vEgo)

    # Get data from dmonitoringmodeld
    events = Events()
    driver_status.get_pose(sm['driverState'], sm['liveCalibration'].rpyCalib, sm['carState'].vEgo, sm['controlsState'].enabled)

    # Block engaging after max number of distrations
    if driver_status.terminal_alert_cnt >= driver_status.settings._MAX_TERMINAL_ALERTS or \
       driver_status.terminal_time >= driver_status.settings._MAX_TERMINAL_DURATION:
      events.add(car.CarEvent.EventName.tooDistracted)

    # Update events from driver state
    driver_status.update(events, driver_engaged, sm['controlsState'].enabled, sm['carState'].standstill)

    # build driverMonitoringState packet
    dat = messaging.new_message('driverMonitoringState')
    dat.driverMonitoringState = {
      "events": events.to_msg(),
      "faceDetected": driver_status.face_detected,
      "isDistracted": driver_status.driver_distracted,
      "awarenessStatus": driver_status.awareness,
      "posePitchOffset": driver_status.pose.pitch_offseter.filtered_stat.mean(),
      "posePitchValidCount": driver_status.pose.pitch_offseter.filtered_stat.n,
      "poseYawOffset": driver_status.pose.yaw_offseter.filtered_stat.mean(),
      "poseYawValidCount": driver_status.pose.yaw_offseter.filtered_stat.n,
      "stepChange": driver_status.step_change,
      "awarenessActive": driver_status.awareness_active,
      "awarenessPassive": driver_status.awareness_passive,
      "isLowStd": driver_status.pose.low_std,
      "hiStdCount": driver_status.hi_stds,
      "isActiveMode": driver_status.active_monitoring_mode,
    }
    pm.send('driverMonitoringState', dat)
Пример #4
0
def radard_thread(gctx=None):
    set_realtime_priority(2)

    # wait for stats about the car to come in from controls
    cloudlog.info("radard is waiting for CarParams")
    CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
    mocked = CP.carName == "mock"
    VM = VehicleModel(CP)
    cloudlog.info("radard got CarParams")

    # import the radar from the fingerprint
    cloudlog.info("radard is importing %s", CP.carName)
    RadarInterface = importlib.import_module(
        'selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface

    can_sock = messaging.sub_sock(service_list['can'].port)
    sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])

    RI = RadarInterface(CP)

    # *** publish radarState and liveTracks
    radarState = messaging.pub_sock(service_list['radarState'].port)
    liveTracks = messaging.pub_sock(service_list['liveTracks'].port)

    rk = Ratekeeper(rate, print_delay_threshold=None)
    RD = RadarD(VM, mocked)

    while 1:
        can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
        rr = RI.update(can_strings)

        if rr is None:
            continue

        sm.update(0)

        dat = RD.update(rk.frame, RI.delay, sm, rr)
        dat.radarState.cumLagMs = -rk.remaining * 1000.

        radarState.send(dat.to_bytes())

        # *** publish tracks for UI debugging (keep last) ***
        tracks = RD.tracks
        dat = messaging.new_message()
        dat.init('liveTracks', len(tracks))

        for cnt, ids in enumerate(tracks.keys()):
            if DEBUG:
                print("id: %4.0f x:  %4.1f  y: %4.1f  vr: %4.1f d: %4.1f  va: %4.1f  vl: %4.1f  vlk: %4.1f alk: %4.1f  s: %1.0f  v: %1.0f" % \
                  (ids, tracks[ids].dRel, tracks[ids].yRel, tracks[ids].vRel,
                   tracks[ids].dPath, tracks[ids].vLat,
                   tracks[ids].vLead, tracks[ids].vLeadK,
                   tracks[ids].aLeadK,
                   tracks[ids].stationary,
                   tracks[ids].measured))
            dat.liveTracks[cnt] = {
                "trackId": ids,
                "dRel": float(tracks[ids].dRel),
                "yRel": float(tracks[ids].yRel),
                "vRel": float(tracks[ids].vRel),
                "aRel": float(tracks[ids].aRel),
                "stationary": bool(tracks[ids].stationary),
                "oncoming": bool(tracks[ids].oncoming),
            }
        liveTracks.send(dat.to_bytes())

        rk.monitor_time()
Пример #5
0
def radard_thread(sm=None, pm=None, can_sock=None):
    set_realtime_priority(2)

    # wait for stats about the car to come in from controls
    cloudlog.info("radard is waiting for CarParams")
    CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
    if CP.radarOffCan:
        mocked = True
    else:
        mocked = CP.carName == "mock"
    cloudlog.info("radard got CarParams")

    # import the radar from the fingerprint
    cloudlog.info("radard is importing %s", CP.carName)
    RadarInterface = importlib.import_module(
        'selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface

    if can_sock is None:
        can_sock = messaging.sub_sock('can')

    if sm is None:
        sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])

    # *** publish radarState and liveTracks
    if pm is None:
        pm = messaging.PubMaster(['radarState', 'liveTracks'])

    RI = RadarInterface(CP)

    rk = Ratekeeper(1.0 / DT_RDR, print_delay_threshold=None)
    RD = RadarD(mocked, RI.delay)

    has_radar = True

    while 1:
        can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
        rr = RI.update(can_strings)

        if rr is None:
            continue

        sm.update(0)

        dat = RD.update(rk.frame, sm, rr, has_radar)
        dat.radarState.cumLagMs = -rk.remaining * 1000.

        pm.send('radarState', dat)

        # *** publish tracks for UI debugging (keep last) ***
        tracks = RD.tracks
        dat = messaging.new_message()
        dat.init('liveTracks', len(tracks))

        for cnt, ids in enumerate(sorted(tracks.keys())):
            dat.liveTracks[cnt] = {
                "trackId": ids,
                "dRel": float(tracks[ids].dRel),
                "yRel": float(tracks[ids].yRel),
                "vRel": float(tracks[ids].vRel),
            }
        pm.send('liveTracks', dat)

        rk.monitor_time()
Пример #6
0
def controlsd_thread(sm=None, pm=None, can_sock=None):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    params = Params()

    is_metric = params.get("IsMetric", encoding='utf8') == "1"
    is_ldw_enabled = params.get("IsLdwEnabled", encoding='utf8') == "1"
    passive = params.get("Passive", encoding='utf8') == "1"
    openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle",
                                          encoding='utf8') == "1"
    community_feature_toggle = params.get("CommunityFeaturesToggle",
                                          encoding='utf8') == "1"

    passive = passive or not openpilot_enabled_toggle

    # Passive if internet needed
    internet_needed = params.get("Offroad_ConnectivityNeeded",
                                 encoding='utf8') is not None
    passive = passive or internet_needed

    # Pub/Sub Sockets
    if pm is None:
        pm = messaging.PubMaster([
            'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents',
            'carParams'
        ])

    if sm is None:
        sm = messaging.SubMaster(['thermal', 'health', 'liveCalibration', 'dMonitoringState', 'plan', 'pathPlan', \
                                  'model'])

    if can_sock is None:
        can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100
        can_sock = messaging.sub_sock('can', timeout=can_timeout)

    # wait for health and CAN packets
    hw_type = messaging.recv_one(sm.sock['health']).health.hwType
    has_relay = hw_type in [HwType.blackPanda, HwType.uno]
    print("Waiting for CAN messages...")
    messaging.get_one_can(can_sock)

    CI, CP = get_car(can_sock, pm.sock['sendcan'], has_relay)

    car_recognized = CP.carName != 'mock'
    # If stock camera is disconnected, we loaded car controls and it's not chffrplus
    controller_available = CP.enableCamera and CI.CC is not None and not passive
    community_feature_disallowed = CP.communityFeature and not community_feature_toggle
    read_only = not car_recognized or not controller_available or CP.dashcamOnly or community_feature_disallowed
    if read_only:
        CP.safetyModel = car.CarParams.SafetyModel.noOutput

    # Write CarParams for radard and boardd safety mode
    cp_bytes = CP.to_bytes()
    params.put("CarParams", cp_bytes)
    put_nonblocking("CarParamsCache", cp_bytes)
    put_nonblocking("LongitudinalControl",
                    "1" if CP.openpilotLongitudinalControl else "0")

    CC = car.CarControl.new_message()
    AM = AlertManager()

    startup_alert = get_startup_alert(car_recognized, controller_available)
    AM.add(sm.frame, startup_alert, False)

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)

    if CP.lateralTuning.which() == 'pid':
        LaC = LatControlPID(CP)
    elif CP.lateralTuning.which() == 'indi':
        LaC = LatControlINDI(CP)
    elif CP.lateralTuning.which() == 'lqr':
        LaC = LatControlLQR(CP)

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    mismatch_counter = 0
    can_error_counter = 0
    last_blinker_frame = 0
    saturated_count = 0
    events_prev = []

    sm['liveCalibration'].calStatus = Calibration.INVALID
    sm['pathPlan'].sensorValid = True
    sm['pathPlan'].posenetValid = True
    sm['thermal'].freeSpace = 1.
    sm['dMonitoringState'].events = []
    sm['dMonitoringState'].awarenessStatus = 1.
    sm['dMonitoringState'].faceDetected = False

    # detect sound card presence
    sounds_available = not os.path.isfile('/EON') or (
        os.path.isdir('/proc/asound/card0')
        and open('/proc/asound/card0/state').read().strip() == 'ONLINE')

    # controlsd is driven by can recv, expected at 100Hz
    rk = Ratekeeper(100, print_delay_threshold=None)

    prof = Profiler(False)  # off by default

    while True:
        start_time = sec_since_boot()
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_perc, mismatch_counter, can_error_counter = data_sample(
            CI, CC, sm, can_sock, state, mismatch_counter, can_error_counter,
            params)
        prof.checkpoint("Sample")

        # Create alerts
        if not sm.alive['plan'] and sm.alive[
                'pathPlan']:  # only plan not being received: radar not communicating
            events.append(
                create_event('radarCommIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        elif not sm.all_alive_and_valid():
            events.append(
                create_event('commIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not sm['pathPlan'].mpcSolutionValid:
            events.append(
                create_event('plannerError',
                             [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
        if not sm['pathPlan'].sensorValid and os.getenv("NOSENSOR") is None:
            events.append(
                create_event('sensorDataInvalid', [ET.NO_ENTRY, ET.PERMANENT]))
        if not sm['pathPlan'].paramsValid:
            events.append(create_event('vehicleModelInvalid', [ET.WARNING]))
        if not sm['pathPlan'].posenetValid:
            events.append(
                create_event('posenetInvalid', [ET.NO_ENTRY, ET.WARNING]))
        if not sm['plan'].radarValid:
            events.append(
                create_event('radarFault', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if sm['plan'].radarCanError:
            events.append(
                create_event('radarCanError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not CS.canValid:
            events.append(
                create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
        if not sounds_available:
            events.append(
                create_event('soundsUnavailable', [ET.NO_ENTRY, ET.PERMANENT]))
        if internet_needed:
            events.append(
                create_event('internetConnectivityNeeded',
                             [ET.NO_ENTRY, ET.PERMANENT]))
        if community_feature_disallowed:
            events.append(
                create_event('communityFeatureDisallowed', [ET.PERMANENT]))
        if read_only and not passive:
            events.append(create_event('carUnrecognized', [ET.PERMANENT]))
        if log.HealthData.FaultType.relayMalfunction in sm['health'].faults:
            events.append(
                create_event(
                    'relayMalfunction',
                    [ET.NO_ENTRY, ET.PERMANENT, ET.IMMEDIATE_DISABLE]))

        # Only allow engagement with brake pressed when stopped behind another stopped car
        if CS.brakePressed and sm[
                'plan'].vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
            events.append(
                create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not read_only:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(sm.frame, CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, v_acc, a_acc, lac_log, last_blinker_frame, saturated_count = \
          state_control(sm.frame, sm.rcv_frame, sm['plan'], sm['pathPlan'], CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM, rk,
                        LaC, LoC, read_only, is_metric, cal_perc, last_blinker_frame, saturated_count)

        prof.checkpoint("State Control")

        # Publish data
        CC, events_prev = data_send(sm, pm, CS, CI, CP, VM, state, events,
                                    actuators, v_cruise_kph, rk, AM, LaC, LoC,
                                    read_only, start_time, v_acc, a_acc,
                                    lac_log, events_prev, last_blinker_frame,
                                    is_ldw_enabled, can_error_counter)
        prof.checkpoint("Sent")

        rk.monitor_time()
        prof.display()
Пример #7
0
    def __init__(self, sm=None, pm=None, can_sock=None):
        gc.disable()
        set_realtime_priority(3)

        self.trace_log = trace1.Loger("controlsd")
        # Setup sockets
        self.pm = pm
        if self.pm is None:
            self.pm = messaging.PubMaster(['sendcan', 'controlsState', 'carState', \
                                           'carControl', 'carEvents', 'carParams'])

        self.sm = sm
        if self.sm is None:
            socks = [
                'thermal', 'health', 'model', 'liveCalibration',
                'dMonitoringState', 'plan', 'pathPlan', 'liveLocationKalman'
            ]
            self.sm = messaging.SubMaster(socks,
                                          ignore_alive=['dMonitoringState'])

            #self.sm = messaging.SubMaster(['thermal', 'health', 'model', 'liveCalibration', \
            #                               'dMonitoringState', 'plan', 'pathPlan', 'liveLocationKalman'])

        print(" start_Controls  messages...1")
        self.can_sock = can_sock
        if can_sock is None:
            can_timeout = None if os.environ.get('NO_CAN_TIMEOUT',
                                                 False) else 100
            self.can_sock = messaging.sub_sock('can', timeout=can_timeout)

        print(" start_Controls  messages...2")
        # wait for one health and one CAN packet
        hw_type = messaging.recv_one(self.sm.sock['health']).health.hwType
        has_relay = hw_type in [HwType.blackPanda, HwType.uno]
        print("Waiting for CAN messages...")
        messaging.get_one_can(self.can_sock)

        self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'],
                                   has_relay)

        # read params
        params = Params()
        self.is_metric = params.get("IsMetric", encoding='utf8') == "1"
        self.is_ldw_enabled = params.get("IsLdwEnabled",
                                         encoding='utf8') == "1"
        internet_needed = params.get("Offroad_ConnectivityNeeded",
                                     encoding='utf8') is not None
        community_feature_toggle = params.get("CommunityFeaturesToggle",
                                              encoding='utf8') == "1"
        openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle",
                                              encoding='utf8') == "1"
        passive = params.get("Passive", encoding='utf8') == "1" or \
                  internet_needed or not openpilot_enabled_toggle

        # detect sound card presence and ensure successful init
        sounds_available = not os.path.isfile('/EON') or (os.path.isfile('/proc/asound/card0/state') \
                                and open('/proc/asound/card0/state').read().strip() == 'ONLINE')

        car_recognized = self.CP.carName != 'mock'
        # If stock camera is disconnected, we loaded car controls and it's not dashcam mode
        controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive
        community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle
        self.read_only = not car_recognized or not controller_available or \
                           self.CP.dashcamOnly or community_feature_disallowed
        if self.read_only:
            self.CP.safetyModel = car.CarParams.SafetyModel.noOutput

        # Write CarParams for radard and boardd safety mode
        cp_bytes = self.CP.to_bytes()
        params.put("CarParams", cp_bytes)
        put_nonblocking("CarParamsCache", cp_bytes)
        put_nonblocking("LongitudinalControl",
                        "1" if self.CP.openpilotLongitudinalControl else "0")

        self.CC = car.CarControl.new_message()
        self.AM = AlertManager()
        self.events = Events()

        self.LoC = LongControl(self.CP, self.CI.compute_gb)
        self.VM = VehicleModel(self.CP)

        print('self.CP.lateralTuning.which()={}'.format(
            self.CP.lateralTuning.which()))
        if self.CP.lateralTuning.which() == 'pid':
            self.LaC = LatControlPID(self.CP)
        elif self.CP.lateralTuning.which() == 'indi':
            self.LaC = LatControlINDI(self.CP)
        elif self.CP.lateralTuning.which() == 'lqr':
            self.LaC = LatControlLQR(self.CP)

        self.state = State.disabled
        self.enabled = False
        self.active = False
        self.can_rcv_error = False
        self.soft_disable_timer = 0
        self.v_cruise_kph = 255
        self.v_cruise_kph_last = 0
        self.mismatch_counter = 0
        self.can_error_counter = 0
        self.consecutive_can_error_count = 0
        self.last_blinker_frame = 0
        self.saturated_count = 0
        self.events_prev = []
        self.current_alert_types = []

        self.sm['liveCalibration'].calStatus = Calibration.INVALID
        self.sm['thermal'].freeSpace = 1.
        self.sm['dMonitoringState'].events = []
        self.sm['dMonitoringState'].awarenessStatus = 1.
        self.sm['dMonitoringState'].faceDetected = False

        self.startup_event = get_startup_event(car_recognized,
                                               controller_available, hw_type)

        if not sounds_available:
            self.events.add(EventName.soundsUnavailable, static=True)
        if internet_needed:
            self.events.add(EventName.internetConnectivityNeeded, static=True)
        if community_feature_disallowed:
            self.events.add(EventName.communityFeatureDisallowed, static=True)
        if self.read_only and not passive:
            self.events.add(EventName.carUnrecognized, static=True)
        # if hw_type == HwType.whitePanda:
        #   self.events.add(EventName.whitePandaUnsupported, static=True)

        uname = subprocess.check_output(["uname", "-v"],
                                        encoding='utf8').strip()
        if uname == "#1 SMP PREEMPT Wed Jun 10 12:40:53 PDT 2020":
            self.events.add(EventName.neosUpdateRequired, static=True)

        # controlsd is driven by can recv, expected at 100Hz
        self.rk = Ratekeeper(100, print_delay_threshold=None)
        self.prof = Profiler(False)  # off by default

        self.hyundai_lkas = self.read_only  #read_only
        self.init_flag = True
Пример #8
0
def controlsd_thread(gctx=None, rate=100):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    ##### AS
    context = zmq.Context()
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    carla_socket = context.socket(zmq.PAIR)
    carla_socket.bind("tcp://*:5560")

    is_metric = True
    passive = True
    ##### AS

    # No sendcan if passive
    if not passive:
        sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
    else:
        sendcan = None

    # Sub sockets
    poller = zmq.Poller()
    #thermal = messaging.sub_sock(context, service_list['thermal'].port, conflate=True, poller=poller)
    #health = messaging.sub_sock(context, service_list['health'].port, conflate=True, poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    #driver_monitor = messaging.sub_sock(context, service_list['driverMonitoring'].port, conflate=True, poller=poller)
    plan_sock = messaging.sub_sock(context,
                                   service_list['plan'].port,
                                   conflate=True,
                                   poller=poller)
    path_plan_sock = messaging.sub_sock(context,
                                        service_list['pathPlan'].port,
                                        conflate=True,
                                        poller=poller)
    #logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()
    CP = ToyotaInterface.get_params("TOYOTA PRIUS 2017", {})
    CP.steerRatio = 1.0
    CI = ToyotaInterface(CP, sendcan)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(CP)
    AM = AlertManager()

    if not passive:
        AM.add("startup", False)

    state = State.enabled
    soft_disable_timer = 0
    v_cruise_kph = 50  ##### !!! change
    v_cruise_kph_last = 0  ##### !! change
    cal_status = Calibration.CALIBRATED
    cal_perc = 0

    plan = messaging.new_message()
    plan.init('plan')
    path_plan = messaging.new_message()
    path_plan.init('pathPlan')

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    angle_offset = 0.

    prof = Profiler(False)  # off by default

    startup = True  ##### AS
    while True:
        start_time = int(sec_since_boot() * 1e9)
        prof.checkpoint("Ratekeeper", ignore=True)
        if cal_status != Calibration.CALIBRATED:
            assert (1 == 0), 'Got uncalibrated for some reason'

        stuff = recv_array(carla_socket)
        current_vel = float(stuff[0])
        current_steer = float(stuff[1])
        v_cruise_kph = float(stuff[2])

        updateInternalCS(CI.CS, current_vel, current_steer, 0, v_cruise_kph)
        CS = returnNewCS(CI)
        events = list(CS.events)

        ##### AS since we dont do preenabled state
        if startup:
            LaC.reset()
            LoC.reset(v_pid=CS.vEgo)
            v_acc = 0
            a_acc = 0
            AM.process_alerts(0.0)
            startup = False

        ASsend_live100_CS(plan, path_plan, CS, VM, state, events, v_cruise_kph,
                          AM, LaC, LoC, angle_offset, v_acc, a_acc, rk,
                          start_time, live100, carstate)

        cal_status, cal_perc, plan, path_plan  =\
          ASdata_sample(plan_sock, path_plan_sock, cal, poller, cal_status, cal_perc, state, plan, path_plan)
        prof.checkpoint("Sample")

        path_plan_age = (start_time - path_plan.logMonoTime) / 1e9
        plan_age = (start_time - plan.logMonoTime) / 1e9
        if not path_plan.pathPlan.valid or plan_age > 0.5 or path_plan_age > 0.5:
            print 'planner time too long or invalid'
            #events.append(create_event('plannerError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        events += list(plan.plan.events)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        #if CS.brakePressed and plan.plan.vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
        #  events.append(create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        v_acc, a_acc = \
          ASstate_control(plan.plan, path_plan.pathPlan, CS, CP, state, events, v_cruise_kph,
                        v_cruise_kph_last, AM, rk,
                        LaC, LoC, VM, angle_offset, passive, is_metric, cal_perc)
        prof.checkpoint("State Control")

        # Publish data
        yawrate = VM.yaw_rate(math.radians(path_plan.pathPlan.angleSteers),
                              v_acc)
        beta = (VM.aR + VM.aF * VM.chi -
                VM.m * v_acc**2 / VM.cF / VM.cR / VM.l *
                (VM.cF * VM.aF - VM.cR * VM.aR * VM.chi))
        beta *= yawrate / (1 - VM.chi) / v_acc
        send_array(
            carla_socket,
            np.array([
                v_acc, path_plan.pathPlan.angleSteers,
                -3.3 * math.degrees(yawrate), -3.3 * math.degrees(beta)
            ]))

        prof.checkpoint("Sent")

        rk.monitor_time()  # Run at 100Hz, no 20 Hz
        prof.display()
Пример #9
0
def controlsd_thread(gctx=None, rate=100, default_bias=0.):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    context = zmq.Context()
    params = Params()

    # pub
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    livempc = messaging.pub_sock(context, service_list['liveMpc'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"
    if not passive:
        while 1:
            try:
                sendcan = messaging.pub_sock(context,
                                             service_list['sendcan'].port)
                break
            except zmq.error.ZMQError:
                kill_defaultd()
    else:
        sendcan = None

    # sub
    poller = zmq.Poller()
    thermal = messaging.sub_sock(context,
                                 service_list['thermal'].port,
                                 conflate=True,
                                 poller=poller)
    health = messaging.sub_sock(context,
                                service_list['health'].port,
                                conflate=True,
                                poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    driver_monitor = messaging.sub_sock(context,
                                        service_list['driverMonitoring'].port,
                                        conflate=True,
                                        poller=poller)
    gps_location = messaging.sub_sock(context,
                                      service_list['gpsLocationExternal'].port,
                                      conflate=True,
                                      poller=poller)

    logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()

    CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    fcw_enabled = params.get("IsFcwEnabled") == "1"
    geofence = None

    PL = Planner(CP, fcw_enabled)
    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(VM)
    AM = AlertManager()
    driver_status = DriverStatus()

    if not passive:
        AM.add("startup", False)

    # write CarParams
    params.put("CarParams", CP.to_bytes())

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)

    # learned angle offset
    angle_offset = default_bias
    calibration_params = params.get("CalibrationParams")
    if calibration_params:
        try:
            calibration_params = json.loads(calibration_params)
            angle_offset = calibration_params["angle_offset2"]
        except (ValueError, KeyError):
            pass

    prof = Profiler(False)  # off by default

    # Setup for real-time tuning
    rt_tuning_file = '/data/.openpilot_rtt_params.pkl'
    rtt_params = {}
    last_mod_time = 0

    while 1:

        prof.checkpoint("Ratekeeper", ignore=True)

        # sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter = data_sample(
            CI, CC, thermal, cal, health, driver_monitor, gps_location, poller,
            cal_status, cal_perc, overtemp, free_space, low_battery,
            driver_status, geofence, state, mismatch_counter, params)
        prof.checkpoint("Sample")

        # define plan
        plan, plan_ts = calc_plan(CS, CP, events, PL, LaC, LoC, v_cruise_kph,
                                  driver_status, geofence)
        prof.checkpoint("Plan")

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # compute actuators
        actuators, v_cruise_kph, driver_status, angle_offset = state_control(
            plan, CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM,
            rk, driver_status, PL, LaC, LoC, VM, angle_offset, passive,
            is_metric, cal_perc)
        prof.checkpoint("State Control")

        # publish data
        CC = data_send(PL.perception_state, plan, plan_ts, CS, CI, CP, VM,
                       state, events, actuators, v_cruise_kph, rk, carstate,
                       carcontrol, live100, livempc, AM, driver_status, LaC,
                       LoC, angle_offset, passive)
        prof.checkpoint("Sent")

        ######################   Real-Time Tuning Add-on  ########################
        # TODO:  Move this into it's own function to clean things up
        # TODO:  Need to delay until fingerprint, or is this after already?
        # Run this once per second... on frame 29, of course.
        if rk.frame % 100 == 29:
            # Get the last update time of our real-time tuning file
            #print('Real-Time Tuning:  Checking tuning file modification time.')
            try:
                mod_time = os.path.getmtime(rt_tuning_file)
                #print('RTT mod_time:  {0}'.format(mod_time))
            except OSError:
                # File doesn't exist or is inaccessible
                mod_time = None
                print(
                    'Real-Time Tuning:  RT_TUNING_FILE did not exist or was inaccessible.'
                )

            # If rt_tuning_file doesn't exist, then create it from the current CarParams:
            if mod_time is None:
                rtt_params['steerKpBP'] = list(
                    CP.steerKpBP
                )  # Note that the Kp/Ki are lists!  But if you reference them directly they are <capnp list builder []>.. oops.
                rtt_params['steerKpV'] = list(CP.steerKpV)
                rtt_params['steerKiBP'] = list(CP.steerKiBP)
                rtt_params['steerKiV'] = list(CP.steerKiV)
                rtt_params['steerKf'] = CP.steerKf
                # TODO:  Give the option to link the front and rear tire stiffness changes together
                rtt_params['tireStiffnessFront'] = CP.tireStiffnessFront
                rtt_params['tireStiffnessRear'] = CP.tireStiffnessRear
                rtt_params['steerRatio'] = CP.steerRatio
                rtt_params['steerRateCost'] = CP.steerRateCost
                rtt_params['latPidDeadzone'] = 0.0
                rtt_params['steerActuatorDelay'] = CP.steerActuatorDelay
                # rtt_params['Camera Offset'] = PL.PP.cam_offset
                # Write the pickle file
                # TODO:  try/except the open
                with open(rt_tuning_file, "wb") as f_write:
                    pickle.dump(
                        rtt_params, f_write,
                        -1)  # Dump to file with highest protocol (fastest)
                # No need to update next time if we just wrote the file out...
                last_mod_time = os.path.getmtime(rt_tuning_file)
                #print('RTT Last_mod_time:  {0}'.format(last_mod_time))

            # If file exists and has been updated since the last time we read it in
            elif last_mod_time != mod_time:
                print(
                    'Real-Time Tuning:  Reading in the modified tuning file.')
                # Read in parameters from file
                # TODO:  try/except the open
                with open(rt_tuning_file, "rb") as f_read:
                    rtt_params = pickle.load(f_read)
                # Sanity check the data before setting it.. format is [min, max, failsafe]
                #   Failsafe is used if a value is not found or if the value sent is out of the range limits
                rt_data_limits = {
                    'steerKpBP': [0.0, 67.0, 0.0],
                    'steerKpV': [0.0, 1.0, 0.2],
                    'steerKiBP': [0.0, 67.0, 0.0],
                    'steerKiV': [0.0, 1.0, 0.05],
                    'steerKf': [0.0, 0.001, 0.00005],
                    'tireStiffnessFront': [20000, 1000000, 192150],
                    'tireStiffnessRear': [20000, 1000000, 202500],
                    'steerRatio': [8.0, 25.0, 14.0],
                    'steerRateCost': [0.05, 1.0, 0.5],
                    'latPidDeadzone': [0.0, 4.0, 0.0],
                    'steerActuatorDelay': [0.0, 0.5, 0.1]
                    # 'Camera Offset': [ -0.2, 0.2, 0.06 ]
                }
                # Do the checks and set the values
                for key in rt_data_limits:
                    rt_val = rtt_params.get(key)
                    if rt_val is None:
                        # If this key from data limits doesn't exist in our tuning data, then add it as the failsafe
                        # TODO:  Use CP value here instead of failsafe?
                        rtt_params[key] = rt_data_limits[key][2]
                        print(
                            'Real-Time Tuning:  Value did not exist in tuning file, replaced with failsafe.  Key: '
                            + key)
                        continue
                    # If it does exist, then check the values.  First see if it's a list
                    try:
                        # If it's an iterable list...
                        for i, val2 in enumerate(rt_val):
                            # Check each value in the list
                            if (val2 < rt_data_limits[key][0]) or (
                                    val2 > rt_data_limits[key][1]):
                                rt_val[i] = rt_data_limits[key][2]
                                print(
                                    'Real-Time Tuning:  Invalid value replaced!  Key: '
                                    + key)
                    except:
                        # Not interable, compare it and fix if necessary
                        if (rt_val < rt_data_limits[key][0]) or (
                                rt_val > rt_data_limits[key][1]):
                            rt_val = rt_data_limits[key][2]
                            print(
                                'Real-Time Tuning:  Invalid value replaced!  Key: '
                                + key)
                    # Set it back so if anything was fixed we have the updated value
                    rtt_params[key] = rt_val

                # Update CP with the new params
                CP.steerKpBP = rtt_params['steerKpBP']
                CP.steerKpV = rtt_params['steerKpV']
                CP.steerKiBP = rtt_params['steerKiBP']
                CP.steerKiV = rtt_params['steerKiV']
                CP.steerKf = rtt_params['steerKf']
                CP.tireStiffnessFront = rtt_params['tireStiffnessFront']
                CP.tireStiffnessRear = rtt_params['tireStiffnessRear']
                CP.steerRatio = rtt_params['steerRatio']
                CP.steerActuatorDelay = rtt_params['steerActuatorDelay']
                if CP.steerRateCost != rtt_params['steerRateCost']:
                    print(CP.steerRateCost)
                    print(rtt_params['steerRateCost'])
                    CP.steerRateCost = rtt_params['steerRateCost']
                    rt_mpc_flag = True
                    print(
                        'Real-Time Tuning:  CP.steerRateCost changed - Re-initializing lateral MPC.'
                    )
                else:
                    rt_mpc_flag = False
                # TODO:  try/except the open
                # Write the pickle file back so if we fixed any data errors the revised values will show up on the client-side
                with open(rt_tuning_file, "wb") as f_write:
                    pickle.dump(
                        rtt_params, f_write,
                        -1)  # Dump to file with highest protocol (fastest)
                    # Set the last modified time to this write.... we don't need to read back in what we just wrote out
                    # Only set this if we were able to successfully make the write (once the try/except is added)
                    last_mod_time = os.path.getmtime(rt_tuning_file)
                # Make updates in latcontrol, etc.  I'm not sure if this is actually necessary, depends on if the objects are referenced or not.  Anyway, one less thing to debug atm.
                VM.update_rt_params(CP)
                LaC.update_rt_params(VM,
                                     rt_mpc_flag,
                                     deadzone=rtt_params['latPidDeadzone'])
                #PL.PP.update_rt_params(rtt_params['Camera Offset'])
                #print('RTT Last_mod_time:  {0}'.format(last_mod_time))

        ####### END OF REAL-TIME TUNING ADD-ON #######

        # *** run loop at fixed rate ***
        rk.keep_time()

        prof.display()
Пример #10
0
def dmonitoringd_thread(sm=None, pm=None):
    gc.disable()
    set_realtime_priority(53)

    # Pub/Sub Sockets
    if pm is None:
        pm = messaging.PubMaster(['dMonitoringState'])

    if sm is None:
        sm = messaging.SubMaster(
            ['driverState', 'liveCalibration', 'carState', 'model'])

    params = Params()

    driver_status = DriverStatus()
    is_rhd = params.get("IsRHD")
    driver_status.is_rhd_region = is_rhd == b"1"
    driver_status.is_rhd_region_checked = is_rhd is not None

    sm['liveCalibration'].calStatus = Calibration.INVALID
    sm['liveCalibration'].rpyCalib = [0, 0, 0]
    sm['carState'].vEgo = 0.
    sm['carState'].cruiseState.enabled = False
    sm['carState'].cruiseState.speed = 0.
    sm['carState'].buttonEvents = []
    sm['carState'].steeringPressed = False
    sm['carState'].gasPressed = False
    sm['carState'].standstill = True

    v_cruise_last = 0
    driver_engaged = False
    offroad = params.get("IsOffroad") == b"1"

    # 10Hz <- dmonitoringmodeld
    while True:
        sm.update()

        # Get interaction
        if sm.updated['carState']:
            v_cruise = sm['carState'].cruiseState.speed
            driver_engaged = len(sm['carState'].buttonEvents) > 0 or \
                              v_cruise != v_cruise_last or \
                              sm['carState'].steeringPressed or \
                              sm['carState'].gasPressed
            if driver_engaged:
                driver_status.update(Events(), True,
                                     sm['carState'].cruiseState.enabled,
                                     sm['carState'].standstill)
            v_cruise_last = v_cruise

        # Get model meta
        if sm.updated['model']:
            driver_status.set_policy(sm['model'])

        # Check once a second if we're offroad
        if sm.frame % 1 / DT_DMON == 0:
            offroad = params.get("IsOffroad") == b"1"

        # Get data from dmonitoringmodeld
        if sm.updated['driverState']:
            events = Events()
            driver_status.get_pose(sm['driverState'],
                                   sm['liveCalibration'].rpyCalib,
                                   sm['carState'].vEgo,
                                   sm['carState'].cruiseState.enabled)

            # Block engaging after max number of distrations
            if driver_status.terminal_alert_cnt >= MAX_TERMINAL_ALERTS or driver_status.terminal_time >= MAX_TERMINAL_DURATION:
                events.add(car.CarEvent.EventName.tooDistracted)

            # Update events from driver state
            driver_status.update(events, driver_engaged,
                                 sm['carState'].cruiseState.enabled,
                                 sm['carState'].standstill)

            # build dMonitoringState packet
            dat = messaging.new_message('dMonitoringState')
            dat.dMonitoringState = {
                "events":
                events.to_msg(),
                "faceDetected":
                driver_status.face_detected,
                "isDistracted":
                driver_status.driver_distracted,
                "awarenessStatus":
                driver_status.awareness,
                "isRHD":
                driver_status.is_rhd_region,
                "rhdChecked":
                driver_status.is_rhd_region_checked,
                "posePitchOffset":
                driver_status.pose.pitch_offseter.filtered_stat.mean(),
                "posePitchValidCount":
                driver_status.pose.pitch_offseter.filtered_stat.n,
                "poseYawOffset":
                driver_status.pose.yaw_offseter.filtered_stat.mean(),
                "poseYawValidCount":
                driver_status.pose.yaw_offseter.filtered_stat.n,
                "stepChange":
                driver_status.step_change,
                "awarenessActive":
                driver_status.awareness_active,
                "awarenessPassive":
                driver_status.awareness_passive,
                "isLowStd":
                driver_status.pose.low_std,
                "hiStdCount":
                driver_status.hi_stds,
                "isPreview":
                offroad,
            }
            pm.send('dMonitoringState', dat)
Пример #11
0
def controlsd_thread(gctx, rate=100):  #rate in Hz
  # *** log ***
  context = zmq.Context()
  live100 = messaging.pub_sock(context, service_list['live100'].port)
  carstate = messaging.pub_sock(context, service_list['carState'].port)
  carcontrol = messaging.pub_sock(context, service_list['carControl'].port)

  thermal = messaging.sub_sock(context, service_list['thermal'].port)
  health = messaging.sub_sock(context, service_list['health'].port)
  plan_sock = messaging.sub_sock(context, service_list['plan'].port)

  logcan = messaging.sub_sock(context, service_list['can'].port)

  # connects to can
  CP = fingerprint(logcan)

  # import the car from the fingerprint
  cloudlog.info("controlsd is importing %s", CP.carName)
  exec('from selfdrive.car.'+CP.carName+'.interface import CarInterface')

  sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
  CI = CarInterface(CP, logcan, sendcan)

  # write CarParams
  Params().put("CarParams", CP.to_bytes())

  AM = AlertManager()

  LoC = LongControl()
  LaC = LatControl()

  # fake plan
  plan = log.Plan.new_message()
  plan.lateralValid = False
  plan.longitudinalValid = False
  last_plan_time = 0

  # controls enabled state
  enabled = False
  last_enable_request = 0

  # learned angle offset
  angle_offset = 0

  # rear view camera state
  rear_view_toggle = False

  v_cruise_kph = 255

  # 0.0 - 1.0
  awareness_status = 0.0

  soft_disable_timer = None

  # Is cpu temp too high to enable?
  overtemp = False
  free_space = 1.0

  # start the loop
  set_realtime_priority(2)

  rk = Ratekeeper(rate, print_delay_threshold=2./1000)
  while 1:
    prof = Profiler()
    cur_time = sec_since_boot()

    # read CAN
    CS = CI.update()

    # broadcast carState
    cs_send = messaging.new_message()
    cs_send.init('carState')
    cs_send.carState = CS    # copy?
    carstate.send(cs_send.to_bytes())

    prof.checkpoint("CarInterface")

    # did it request to enable?
    enable_request, enable_condition = False, False

    if enabled:
      # gives the user 6 minutes
      awareness_status -= 1.0/(100*60*6)
      if awareness_status <= 0.:
        AM.add("driverDistracted", enabled)

    # reset awareness status on steering
    if CS.steeringPressed:
      awareness_status = 1.0

    # handle button presses
    for b in CS.buttonEvents:
      print b

      # reset awareness on any user action
      awareness_status = 1.0

      # button presses for rear view
      if b.type == "leftBlinker" or b.type == "rightBlinker":
        if b.pressed:
          rear_view_toggle = True
        else:
          rear_view_toggle = False

      if b.type == "altButton1" and b.pressed:
        rear_view_toggle = not rear_view_toggle

      if not CP.enableCruise and enabled and not b.pressed:
        if b.type == "accelCruise":
          v_cruise_kph = v_cruise_kph - (v_cruise_kph % V_CRUISE_DELTA) + V_CRUISE_DELTA
        elif b.type == "decelCruise":
          v_cruise_kph = v_cruise_kph - (v_cruise_kph % V_CRUISE_DELTA) - V_CRUISE_DELTA
        v_cruise_kph = clip(v_cruise_kph, V_CRUISE_MIN, V_CRUISE_MAX)

      if not enabled and b.type in ["accelCruise", "decelCruise"] and not b.pressed:
        enable_request = True

      # do disable on button down
      if b.type == "cancel" and b.pressed:
        AM.add("disable", enabled)

    prof.checkpoint("Buttons")

    # *** health checking logic ***
    hh = messaging.recv_sock(health)
    if hh is not None:
      # if the board isn't allowing controls but somehow we are enabled!
      if not hh.health.controlsAllowed and enabled:
        AM.add("controlsMismatch", enabled)

    # *** thermal checking logic ***

    # thermal data, checked every second
    td = messaging.recv_sock(thermal)
    if td is not None:
      # Check temperature.
      overtemp = any(
          t > 950
          for t in (td.thermal.cpu0, td.thermal.cpu1, td.thermal.cpu2,
                    td.thermal.cpu3, td.thermal.mem, td.thermal.gpu))
      # under 15% of space free
      free_space = td.thermal.freeSpace

    prof.checkpoint("Health")

    # disable if the pedals are pressed while engaged, this is a user disable
    if enabled:
      if CS.gasPressed or CS.brakePressed:
        AM.add("disable", enabled)

    if enable_request:
      # check for pressed pedals
      if CS.gasPressed or CS.brakePressed:
        AM.add("pedalPressed", enabled)
        enable_request = False
      else:
        print "enabled pressed at", cur_time
        last_enable_request = cur_time

      # don't engage with less than 15% free
      if free_space < 0.15:
        AM.add("outOfSpace", enabled)
        enable_request = False

    if CP.enableCruise:
      enable_condition = ((cur_time - last_enable_request) < 0.2) and CS.cruiseState.enabled
    else:
      enable_condition = enable_request

    if CP.enableCruise and CS.cruiseState.enabled:
      v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH

    prof.checkpoint("AdaptiveCruise")

    # *** what's the plan ***
    new_plan = messaging.recv_sock(plan_sock)
    if new_plan is not None:
      plan = new_plan.plan
      plan = plan.as_builder()  # plan can change in controls
      last_plan_time = cur_time

    # check plan for timeout
    if cur_time - last_plan_time > 0.5:
      plan.lateralValid = False
      plan.longitudinalValid = False

    # gives 18 seconds before decel begins (w 6 minute timeout)
    if awareness_status < -0.05:
      plan.aTargetMax = min(plan.aTargetMax, -0.2)
      plan.aTargetMin = min(plan.aTargetMin, plan.aTargetMax)

    if enable_request or enable_condition or enabled:
      # add all alerts from car
      for alert in CS.errors:
        AM.add(alert, enabled)

      if not plan.longitudinalValid:
        AM.add("radarCommIssue", enabled)

      if not plan.lateralValid:
        # If the model is not broadcasting, assume that it is because
        # the user has uploaded insufficient data for calibration.
        # Other cases that would trigger this are rare and unactionable by the user.
        AM.add("dataNeeded", enabled)

      if overtemp:
        AM.add("overheat", enabled)

    # *** angle offset learning ***
    if rk.frame % 5 == 2 and plan.lateralValid:
      # *** run this at 20hz again ***
      angle_offset = learn_angle_offset(enabled, CS.vEgo, angle_offset, np.asarray(plan.dPoly), LaC.y_des, CS.steeringPressed)

    # *** gas/brake PID loop ***
    final_gas, final_brake = LoC.update(enabled, CS.vEgo, v_cruise_kph,
                                        plan.vTarget,
                                        [plan.aTargetMin, plan.aTargetMax],
                                        plan.jerkFactor, CP)

    # *** steering PID loop ***
    final_steer, sat_flag = LaC.update(enabled, CS.vEgo, CS.steeringAngle, CS.steeringPressed, plan.dPoly, angle_offset, CP)

    prof.checkpoint("PID")

    # ***** handle alerts ****
    # send a "steering required alert" if saturation count has reached the limit
    if sat_flag:
      AM.add("steerSaturated", enabled)

    if enabled and AM.alertShouldDisable():
      print "DISABLING IMMEDIATELY ON ALERT"
      enabled = False

    if enabled and AM.alertShouldSoftDisable():
      if soft_disable_timer is None:
        soft_disable_timer = 3 * rate
      elif soft_disable_timer == 0:
        print "SOFT DISABLING ON ALERT"
        enabled = False
      else:
        soft_disable_timer -= 1
    else:
      soft_disable_timer = None

    if enable_condition and not enabled and not AM.alertPresent():
      print "*** enabling controls"

      # beep for enabling
      AM.add("enable", enabled)

      # enable both lateral and longitudinal controls
      enabled = True

      # on activation, let's always set v_cruise from where we are, even if PCM ACC is active
      v_cruise_kph = int(round(max(CS.vEgo * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN)))

      # 6 minutes driver you're on
      awareness_status = 1.0

      # reset the PID loops
      LaC.reset()
      # start long control at actual speed
      LoC.reset(v_pid = CS.vEgo)

    # *** push the alerts to current ***
    alert_text_1, alert_text_2, visual_alert, audible_alert = AM.process_alerts(cur_time)

    # ***** control the car *****
    CC = car.CarControl.new_message()

    CC.enabled = enabled

    CC.gas = float(final_gas)
    CC.brake = float(final_brake)
    CC.steeringTorque = float(final_steer)

    CC.cruiseControl.override = True
    CC.cruiseControl.cancel = bool((not CP.enableCruise) or (not enabled and CS.cruiseState.enabled))    # always cancel if we have an interceptor

    # brake discount removes a sharp nonlinearity
    brake_discount = (1.0 - clip(final_brake*3., 0.0, 1.0))
    CC.cruiseControl.speedOverride = float(max(0.0, ((LoC.v_pid - .5) * brake_discount)) if CP.enableCruise else 0.0)

    #CC.cruiseControl.accelOverride = float(AC.a_pcm)
    # TODO: fix this
    CC.cruiseControl.accelOverride = float(1.0)

    CC.hudControl.setSpeed = float(v_cruise_kph * CV.KPH_TO_MS)
    CC.hudControl.speedVisible = enabled
    CC.hudControl.lanesVisible = enabled
    #CC.hudControl.leadVisible = bool(AC.has_lead)
    # TODO: fix this
    CC.hudControl.leadVisible = False

    CC.hudControl.visualAlert = visual_alert
    CC.hudControl.audibleAlert = audible_alert

    # this alert will apply next controls cycle
    if not CI.apply(CC):
      AM.add("controlsFailed", enabled)

    # broadcast carControl
    cc_send = messaging.new_message()
    cc_send.init('carControl')
    cc_send.carControl = CC    # copy?
    carcontrol.send(cc_send.to_bytes())

    prof.checkpoint("CarControl")

    # ***** publish state to logger *****

    # publish controls state at 100Hz
    dat = messaging.new_message()
    dat.init('live100')

    # show rear view camera on phone if in reverse gear or when button is pressed
    dat.live100.rearViewCam = ('reverseGear' in CS.errors) or rear_view_toggle
    dat.live100.alertText1 = alert_text_1
    dat.live100.alertText2 = alert_text_2
    dat.live100.awarenessStatus = max(awareness_status, 0.0) if enabled else 0.0

    # what packets were used to process
    dat.live100.canMonoTimes = list(CS.canMonoTimes)
    #dat.live100.mdMonoTime = PP.logMonoTime
    #dat.live100.l20MonoTime = AC.logMonoTime

    # if controls is enabled
    dat.live100.enabled = enabled

    # car state
    dat.live100.vEgo = CS.vEgo
    dat.live100.angleSteers = CS.steeringAngle
    dat.live100.steerOverride = CS.steeringPressed

    # longitudinal control state
    dat.live100.vPid = float(LoC.v_pid)
    dat.live100.vCruise = float(v_cruise_kph)
    dat.live100.upAccelCmd = float(LoC.Up_accel_cmd)
    dat.live100.uiAccelCmd = float(LoC.Ui_accel_cmd)

    # lateral control state
    dat.live100.yActual = float(LaC.y_actual)
    dat.live100.yDes = float(LaC.y_des)
    dat.live100.upSteer = float(LaC.Up_steer)
    dat.live100.uiSteer = float(LaC.Ui_steer)

    # processed radar state, should add a_pcm?
    dat.live100.vTargetLead = float(plan.vTarget)
    dat.live100.aTargetMin = float(plan.aTargetMin)
    dat.live100.aTargetMax = float(plan.aTargetMax)
    dat.live100.jerkFactor = float(plan.jerkFactor)

    # lag
    dat.live100.cumLagMs = -rk.remaining*1000.

    live100.send(dat.to_bytes())

    prof.checkpoint("Live100")

    # *** run loop at fixed rate ***
    if rk.keep_time():
      prof.display()
Пример #12
0
def radard_thread(gctx=None):
    set_realtime_priority(2)

    # wait for stats about the car to come in from controls
    cloudlog.info("radard is waiting for CarParams")
    CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
    use_tesla_radar = CarSettings().get_value("useTeslaRadar")
    mocked = (CP.carName == "mock") or ((CP.carName == "tesla")
                                        and not use_tesla_radar)
    cloudlog.info("radard got CarParams")

    # import the radar from the fingerprint
    cloudlog.info("radard is importing %s", CP.carName)
    RadarInterface = importlib.import_module(
        'selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface

    can_sock = messaging.sub_sock(service_list['can'].port)
    sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])

    RI = RadarInterface(CP)

    # *** publish radarState and liveTracks
    radarState = messaging.pub_sock(service_list['radarState'].port)
    liveTracks = messaging.pub_sock(service_list['liveTracks'].port)
    icLeads = messaging.pub_sock(service_list['uiIcLeads'].port)

    rk = Ratekeeper(rate, print_delay_threshold=None)
    RD = RadarD(mocked, RI)

    has_radar = not CP.radarOffCan or mocked
    last_md_ts = 0.
    v_ego = 0.

    while 1:
        can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
        rr, rrext = RI.update(can_strings)

        if rr is None:
            continue

        sm.update(0)

        if sm.updated['controlsState']:
            v_ego = sm['controlsState'].vEgo

        dat, datext = RD.update(rk.frame, RI.delay, sm, rr, has_radar, rrext)
        dat.radarState.cumLagMs = -rk.remaining * 1000.

        radarState.send(dat.to_bytes())
        icLeads.send(datext.to_bytes())

        # *** publish tracks for UI debugging (keep last) ***
        tracks = RD.tracks
        dat = messaging.new_message()
        dat.init('liveTracks', len(tracks))

        for cnt, ids in enumerate(tracks.keys()):
            dat.liveTracks[cnt] = {
                "trackId": ids,
                "dRel": float(tracks[ids].dRel),
                "yRel": float(tracks[ids].yRel),
                "vRel": float(tracks[ids].vRel),
            }
        liveTracks.send(dat.to_bytes())

        rk.monitor_time()
Пример #13
0
def radard_thread(sm=None, pm=None, can_sock=None):
  set_realtime_priority(2)

  # wait for stats about the car to come in from controls
  cloudlog.info("radard is waiting for CarParams")
  CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
  use_tesla_radar = CarSettings().get_value("useTeslaRadar")
  mocked = (CP.carName == "mock") or ((CP.carName == "tesla") and not use_tesla_radar)
  cloudlog.info("radard got CarParams")

  # import the radar from the fingerprint
  cloudlog.info("radard is importing %s", CP.carName)
  RadarInterface = importlib.import_module('selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface

  if can_sock is None:
    can_sock = messaging.sub_sock('can')

  if sm is None:
    sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters', 'pathPlan'])

  # *** publish radarState and liveTracks
  if pm is None:
    pm = messaging.PubMaster(['radarState', 'liveTracks'])
    icLeads = messaging.pub_sock('uiIcLeads')
    ahbInfo = messaging.pub_sock('ahbInfo')

  RI = RadarInterface(CP)

  rk = Ratekeeper(1.0 / DT_RDR, print_delay_threshold=None)
  RD = RadarD(mocked, RI, use_tesla_radar,RI.delay)

  has_radar = not CP.radarOffCan or mocked
  last_md_ts = 0.
  v_ego = 0.

  while 1:
    can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)

    sm.update(0)

    if sm.updated['controlsState']:
      v_ego = sm['controlsState'].vEgo

    rr,rrext,ahbCarDetected = RI.update(can_strings,v_ego)

    if rr is None:
      continue    

    dat,datext = RD.update(rk.frame, sm, rr, has_radar, rrext)
    dat.radarState.cumLagMs = -rk.remaining*1000.

    pm.send('radarState', dat)
    icLeads.send(datext.to_bytes())

    ahbInfoMsg = tesla.AHBinfo.new_message()
    ahbInfoMsg.source = 0
    ahbInfoMsg.radarCarDetected = ahbCarDetected
    ahbInfoMsg.cameraCarDetected = False
    ahbInfo.send(ahbInfoMsg.to_bytes())


    # *** publish tracks for UI debugging (keep last) ***
    tracks = RD.tracks
    dat = messaging.new_message()
    dat.init('liveTracks', len(tracks))

    for cnt, ids in enumerate(sorted(tracks.keys())):
      dat.liveTracks[cnt] = {
        "trackId": ids,
        "dRel": float(tracks[ids].dRel),
        "yRel": float(tracks[ids].yRel),
        "vRel": float(tracks[ids].vRel),
      }
    pm.send('liveTracks', dat)

    rk.monitor_time()
Пример #14
0
def radard_thread(sm=None, pm=None, can_sock=None):
    set_realtime_priority(Priority.CTRL_LOW)

    # wait for stats about the car to come in from controls
    cloudlog.info("radard is waiting for CarParams")
    CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
    cloudlog.info("radard got CarParams")

    # import the radar from the fingerprint
    cloudlog.info("radard is importing %s", CP.carName)
    RadarInterface = importlib.import_module(
        'selfdrive.car.%s.radar_interface' % CP.carName).RadarInterface

    if can_sock is None:
        can_sock = messaging.sub_sock('can')

    if sm is None:
        sm = messaging.SubMaster(['model', 'controlsState', 'liveParameters'])

    # *** publish radarState and liveTracks
    if pm is None:
        pm = messaging.PubMaster(['radarState', 'liveTracks'])

    RI = RadarInterface(CP)

    rk = Ratekeeper(1.0 / CP.radarTimeStep, print_delay_threshold=None)
    RD = RadarD(CP.radarTimeStep, RI.delay)

    # TODO: always log leads once we can hide them conditionally
    enable_lead = CP.openpilotLongitudinalControl or not CP.radarOffCan

    while 1:
        can_strings = messaging.drain_sock_raw(can_sock, wait_for_one=True)
        # This looks like a useless tesla hack. See if it can be removed?
        if CP.carName == "tesla":
            rr, rrext, ahbCarDetected = RI.update(can_strings, v_ego=0)
        else:
            rr = RI.update(can_strings)

        if rr is None:
            continue

        sm.update(0)

        dat = RD.update(rk.frame, sm, rr, enable_lead)
        dat.radarState.cumLagMs = -rk.remaining * 1000.

        pm.send('radarState', dat)

        # *** publish tracks for UI debugging (keep last) ***
        tracks = RD.tracks
        dat = messaging.new_message('liveTracks', len(tracks))

        for cnt, ids in enumerate(sorted(tracks.keys())):
            dat.liveTracks[cnt] = {
                "trackId": ids,
                "dRel": float(tracks[ids].dRel),
                "yRel": float(tracks[ids].yRel),
                "vRel": float(tracks[ids].vRel),
            }
        pm.send('liveTracks', dat)

        rk.monitor_time()
Пример #15
0
def main():
    set_core_affinity(3)
    set_realtime_priority(1)

    while True:
        time.sleep(0.000001)
def radard_thread(gctx=None):
    set_realtime_priority(1)

    context = zmq.Context()

    # *** subscribe to features and model from visiond
    model = messaging.sub_sock(context, service_list['model'].port)
    logcan = messaging.sub_sock(context, service_list['can'].port)
    live100 = messaging.sub_sock(context, service_list['live100'].port)

    PP = PathPlanner(model)

    # *** publish live20 and liveTracks
    live20 = messaging.pub_sock(context, service_list['live20'].port)
    liveTracks = messaging.pub_sock(context, service_list['liveTracks'].port)

    # subscribe to stats about the car
    # TODO: move this to new style packet
    VP = VehicleParams(False)  # same for ILX and civic

    ar_pts = {}
    path_x = np.arange(0.0, 140.0, 0.1)  # 140 meters is max

    # Time-alignment
    rate = 20.  # model and radar are both at 20Hz
    tsv = 1. / rate
    rdr_delay = 0.10  # radar data delay in s
    v_len = 20  # how many speed data points to remember for t alignment with rdr data

    enabled = 0
    steer_angle = 0.

    tracks = defaultdict(dict)

    # Nidec
    cp = _create_radard_can_parser()

    # Kalman filter stuff:
    ekfv = EKFV1D()
    speedSensorV = SimpleSensor(XV, 1, 2)

    # v_ego
    v_ego = None
    v_ego_array = np.zeros([2, v_len])
    v_ego_t_aligned = 0.

    rk = Ratekeeper(rate, print_delay_threshold=np.inf)
    while 1:
        canMonoTimes = []
        can_pub_radar = []
        for a in messaging.drain_sock(logcan, wait_for_one=True):
            canMonoTimes.append(a.logMonoTime)
            can_pub_radar.extend(can_capnp_to_can_list_old(a, [1, 3]))

        # only run on the 0x445 packets, used for timing
        if not any(x[0] == 0x445 for x in can_pub_radar):
            continue

        cp.update_can(can_pub_radar)

        if not cp.can_valid:
            # TODO: handle this
            pass

        ar_pts = nidec_decode(cp, ar_pts)

        # receive the live100s
        l100 = messaging.recv_sock(live100)
        if l100 is not None:
            enabled = l100.live100.enabled
            v_ego = l100.live100.vEgo
            steer_angle = l100.live100.angleSteers

            v_ego_array = np.append(v_ego_array,
                                    [[v_ego], [float(rk.frame) / rate]], 1)
            v_ego_array = v_ego_array[:, 1:]

        if v_ego is None:
            continue

        # *** get path prediction from the model ***
        PP.update(sec_since_boot(), v_ego)

        # run kalman filter only if prob is high enough
        if PP.lead_prob > 0.7:
            ekfv.update(speedSensorV.read(PP.lead_dist, covar=PP.lead_var))
            ekfv.predict(tsv)
            ar_pts[VISION_POINT] = (float(ekfv.state[XV]),
                                    np.polyval(PP.d_poly,
                                               float(ekfv.state[XV])),
                                    float(ekfv.state[SPEEDV]), np.nan,
                                    PP.logMonoTime, np.nan, sec_since_boot())
        else:
            ekfv.state[XV] = PP.lead_dist
            ekfv.covar = (np.diag([PP.lead_var, ekfv.var_init]))
            ekfv.state[SPEEDV] = 0.
            if VISION_POINT in ar_pts:
                del ar_pts[VISION_POINT]

        # *** compute the likely path_y ***
        if enabled:  # use path from model path_poly
            path_y = np.polyval(PP.d_poly, path_x)
        else:  # use path from steer, set angle_offset to 0 since calibration does not exactly report the physical offset
            path_y = calc_lookahead_offset(v_ego,
                                           steer_angle,
                                           path_x,
                                           VP,
                                           angle_offset=0)[0]

        # *** remove missing points from meta data ***
        for ids in tracks.keys():
            if ids not in ar_pts:
                tracks.pop(ids, None)

        # *** compute the tracks ***
        for ids in ar_pts:
            # ignore the vision point for now
            if ids == VISION_POINT:
                continue
            rpt = ar_pts[ids]

            # align v_ego by a fixed time to align it with the radar measurement
            cur_time = float(rk.frame) / rate
            v_ego_t_aligned = np.interp(cur_time - rdr_delay, v_ego_array[1],
                                        v_ego_array[0])
            d_path = np.sqrt(
                np.amin((path_x - rpt[0])**2 + (path_y - rpt[1])**2))

            # create the track
            if ids not in tracks or rpt[5] == 1:
                tracks[ids] = Track()
            tracks[ids].update(rpt[0], rpt[1], rpt[2], d_path, v_ego_t_aligned)

            # allow the vision model to remove the stationary flag if distance and rel speed roughly match
            if VISION_POINT in ar_pts:
                dist_to_vision = np.sqrt(
                    (0.5 * (ar_pts[VISION_POINT][0] - rpt[0]))**2 +
                    (2 * (ar_pts[VISION_POINT][1] - rpt[1]))**2)
                rel_speed_diff = abs(ar_pts[VISION_POINT][2] - rpt[2])
                tracks[ids].mix_vision(dist_to_vision, rel_speed_diff)

        # publish tracks (debugging)
        dat = messaging.new_message()
        dat.init('liveTracks', len(tracks))
        for cnt, ids in enumerate(tracks.keys()):
            dat.liveTracks[cnt].trackId = ids
            dat.liveTracks[cnt].dRel = float(tracks[ids].dRel)
            dat.liveTracks[cnt].yRel = float(tracks[ids].yRel)
            dat.liveTracks[cnt].vRel = float(tracks[ids].vRel)
            dat.liveTracks[cnt].aRel = float(tracks[ids].aRel)
            dat.liveTracks[cnt].stationary = tracks[ids].stationary
            dat.liveTracks[cnt].oncoming = tracks[ids].oncoming
        liveTracks.send(dat.to_bytes())

        idens = tracks.keys()
        track_pts = np.array(
            [tracks[iden].get_key_for_cluster() for iden in idens])

        # If we have multiple points, cluster them
        if len(track_pts) > 1:
            link = linkage_vector(track_pts, method='centroid')
            cluster_idxs = fcluster(link, 2.5, criterion='distance')
            clusters = [None] * max(cluster_idxs)

            for idx in xrange(len(track_pts)):
                cluster_i = cluster_idxs[idx] - 1

                if clusters[cluster_i] == None:
                    clusters[cluster_i] = Cluster()
                clusters[cluster_i].add(tracks[idens[idx]])
        elif len(track_pts) == 1:
            # TODO: why do we need this?
            clusters = [Cluster()]
            clusters[0].add(tracks[idens[0]])
        else:
            clusters = []

        # *** extract the lead car ***
        lead_clusters = [
            c for c in clusters if c.is_potential_lead(v_ego, enabled)
        ]
        lead_clusters.sort(key=lambda x: x.dRel)
        lead_len = len(lead_clusters)

        # *** extract the second lead from the whole set of leads ***
        lead2_clusters = [
            c for c in lead_clusters if c.is_potential_lead2(lead_clusters)
        ]
        lead2_clusters.sort(key=lambda x: x.dRel)
        lead2_len = len(lead2_clusters)

        # *** publish live20 ***
        dat = messaging.new_message()
        dat.init('live20')
        dat.live20.mdMonoTime = PP.logMonoTime
        dat.live20.canMonoTimes = canMonoTimes
        if lead_len > 0:
            lead_clusters[0].toLive20(dat.live20.leadOne)
            if lead2_len > 0:
                lead2_clusters[0].toLive20(dat.live20.leadTwo)
            else:
                dat.live20.leadTwo.status = False
        else:
            dat.live20.leadOne.status = False

        dat.live20.cumLagMs = -rk.remaining * 1000.
        live20.send(dat.to_bytes())

        rk.monitor_time()
Пример #17
0
    def __init__(self, sm=None, pm=None, can_sock=None):
        gc.disable()
        set_realtime_priority(53)
        set_core_affinity(3)

        # Setup sockets
        self.pm = pm
        if self.pm is None:
            self.pm = messaging.PubMaster([
                'sendcan', 'controlsState', 'carState', 'carControl',
                'carEvents', 'carParams'
            ])

        self.sm = sm
        if self.sm is None:
            self.sm = messaging.SubMaster([
                'dragonConf', 'thermal', 'health', 'frame', 'model',
                'liveCalibration', 'dMonitoringState', 'plan', 'pathPlan',
                'liveLocationKalman'
            ])

        self.can_sock = can_sock
        if can_sock is None:
            can_timeout = None if os.environ.get('NO_CAN_TIMEOUT',
                                                 False) else 100
            self.can_sock = messaging.sub_sock('can', timeout=can_timeout)

        # wait for one health and one CAN packet
        hw_type = messaging.recv_one(self.sm.sock['health']).health.hwType
        has_relay = hw_type in [HwType.blackPanda, HwType.uno, HwType.dos]
        print("Waiting for CAN messages...")
        messaging.get_one_can(self.can_sock)

        self.CI, self.CP = get_car(self.can_sock, self.pm.sock['sendcan'],
                                   has_relay)

        # read params
        params = Params()
        self.is_metric = params.get("IsMetric", encoding='utf8') == "1"
        self.is_ldw_enabled = params.get("IsLdwEnabled",
                                         encoding='utf8') == "1"
        internet_needed = False  #(params.get("Offroad_ConnectivityNeeded", encoding='utf8') is not None) and (params.get("DisableUpdates") != b"1")
        community_feature_toggle = params.get("CommunityFeaturesToggle",
                                              encoding='utf8') == "1"
        openpilot_enabled_toggle = params.get("OpenpilotEnabledToggle",
                                              encoding='utf8') == "1"
        passive = params.get("Passive", encoding='utf8') == "1" or \
                  internet_needed or not openpilot_enabled_toggle

        # detect sound card presence and ensure successful init
        sounds_available = not ANDROID or get_sound_card_online()

        car_recognized = self.CP.carName != 'mock'
        # If stock camera is disconnected, we loaded car controls and it's not dashcam mode
        controller_available = self.CP.enableCamera and self.CI.CC is not None and not passive
        community_feature_disallowed = self.CP.communityFeature and not community_feature_toggle
        self.read_only = not car_recognized or not controller_available or \
                           self.CP.dashcamOnly or community_feature_disallowed
        if self.read_only:
            self.CP.safetyModel = car.CarParams.SafetyModel.noOutput

        # Write CarParams for radard and boardd safety mode
        cp_bytes = self.CP.to_bytes()
        params.put("CarParams", cp_bytes)
        put_nonblocking("CarParamsCache", cp_bytes)
        put_nonblocking("LongitudinalControl",
                        "1" if self.CP.openpilotLongitudinalControl else "0")

        self.CC = car.CarControl.new_message()
        self.AM = AlertManager()
        self.events = Events()

        self.LoC = LongControl(self.CP, self.CI.compute_gb)
        self.VM = VehicleModel(self.CP)

        if self.CP.lateralTuning.which() == 'pid':
            self.LaC = LatControlPID(self.CP)
        elif self.CP.lateralTuning.which() == 'indi':
            self.LaC = LatControlINDI(self.CP)
        elif self.CP.lateralTuning.which() == 'lqr':
            self.LaC = LatControlLQR(self.CP)

        self.state = State.disabled
        self.enabled = False
        self.active = False
        self.can_rcv_error = False
        self.soft_disable_timer = 0
        self.v_cruise_kph = 255
        self.v_cruise_kph_last = 0
        self.mismatch_counter = 0
        self.can_error_counter = 0
        self.last_blinker_frame = 0
        self.saturated_count = 0
        self.distance_traveled = 0
        self.events_prev = []
        self.current_alert_types = [ET.PERMANENT]

        self.sm['liveCalibration'].calStatus = Calibration.INVALID
        self.sm['thermal'].freeSpace = 1.
        self.sm['dMonitoringState'].events = []
        self.sm['dMonitoringState'].awarenessStatus = 1.
        self.sm['dMonitoringState'].faceDetected = False

        self.startup_event = get_startup_event(car_recognized,
                                               controller_available)

        if not sounds_available:
            self.events.add(EventName.soundsUnavailable, static=True)
        if internet_needed:
            self.events.add(EventName.internetConnectivityNeeded, static=True)
        if community_feature_disallowed:
            self.events.add(EventName.communityFeatureDisallowed, static=True)
        if self.read_only and not passive:
            self.events.add(EventName.carUnrecognized, static=True)
        # if hw_type == HwType.whitePanda:
        #   self.events.add(EventName.whitePandaUnsupported, static=True)

        # controlsd is driven by can recv, expected at 100Hz
        self.rk = Ratekeeper(100, print_delay_threshold=None)
        self.prof = Profiler(False)  # off by default

        # dp
        self.dp_lead_count = 0
        self.dp_camera_offset = CAMERA_OFFSET
Пример #18
0
def controlsd_thread(gctx=None):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    params = Params()

    # Pub Sockets
    sendcan = messaging.pub_sock(service_list['sendcan'].port)
    controlsstate = messaging.pub_sock(service_list['controlsState'].port)
    carstate = messaging.pub_sock(service_list['carState'].port)
    carcontrol = messaging.pub_sock(service_list['carControl'].port)
    carevents = messaging.pub_sock(service_list['carEvents'].port)
    carparams = messaging.pub_sock(service_list['carParams'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"

    sm = messaging.SubMaster([
        'thermal', 'health', 'liveCalibration', 'driverMonitoring', 'plan',
        'pathPlan'
    ])

    logcan = messaging.sub_sock(service_list['can'].port)
    CI, CP = get_car(logcan, sendcan)
    logcan.close()

    # TODO: Use the logcan socket from above, but that will currenly break the tests
    can_sock = messaging.sub_sock(service_list['can'].port, timeout=100)

    CC = car.CarControl.new_message()
    AM = AlertManager()

    car_recognized = CP.carName != 'mock'
    # If stock camera is disconnected, we loaded car controls and it's not chffrplus
    controller_available = CP.enableCamera and CI.CC is not None and not passive
    read_only = not car_recognized or not controller_available
    if read_only:
        CP.safetyModel = car.CarParams.SafetyModel.elm327  # diagnostic only

    startup_alert = get_startup_alert(car_recognized, controller_available)
    AM.add(sm.frame, startup_alert, False)

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)

    if CP.lateralTuning.which() == 'pid':
        LaC = LatControlPID(CP)
    else:
        LaC = LatControlINDI(CP)

    driver_status = DriverStatus()

    # Write CarParams for radard and boardd safety mode
    params.put("CarParams", CP.to_bytes())
    params.put("LongitudinalControl",
               "1" if CP.openpilotLongitudinalControl else "0")

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False
    events_prev = []

    sm['pathPlan'].sensorValid = True

    # controlsd is driven by can recv, expected at 100Hz
    rk = Ratekeeper(100, print_delay_threshold=None)

    prof = Profiler(False)  # off by default

    while True:
        start_time = sec_since_boot()
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter =\
          data_sample(CI, CC, sm, can_sock, cal_status, cal_perc, overtemp, free_space, low_battery,
                      driver_status, state, mismatch_counter, params)
        prof.checkpoint("Sample")

        # Create alerts
        if not sm.all_alive_and_valid():
            events.append(
                create_event('commIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not sm['pathPlan'].mpcSolutionValid:
            events.append(
                create_event('plannerError',
                             [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
        if not sm['pathPlan'].sensorValid:
            events.append(
                create_event('sensorDataInvalid', [ET.NO_ENTRY, ET.PERMANENT]))
        if not sm['pathPlan'].paramsValid:
            events.append(create_event('vehicleModelInvalid', [ET.WARNING]))
        if not sm['plan'].radarValid:
            events.append(
                create_event('radarFault', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if sm['plan'].radarCanError:
            events.append(
                create_event('radarCanError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not CS.canValid:
            events.append(
                create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        # Only allow engagement with brake pressed when stopped behind another stopped car
        if CS.brakePressed and sm[
                'plan'].vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
            events.append(
                create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not read_only:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(sm.frame, CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, driver_status, v_acc, a_acc, lac_log = \
          state_control(sm.frame, sm.rcv_frame, sm['plan'], sm['pathPlan'], CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM, rk,
                        driver_status, LaC, LoC, VM, read_only, is_metric, cal_perc)

        prof.checkpoint("State Control")

        # Publish data
        CC, events_prev = data_send(sm, CS, CI, CP, VM, state, events,
                                    actuators, v_cruise_kph, rk, carstate,
                                    carcontrol, carevents, carparams,
                                    controlsstate, sendcan, AM, driver_status,
                                    LaC, LoC, read_only, start_time, v_acc,
                                    a_acc, lac_log, events_prev)
        prof.checkpoint("Sent")

        rk.monitor_time()
        prof.display()
Пример #19
0
def controlsd_thread(sm=None, pm=None, can_sock=None):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    params = Params()

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"

    # Pub/Sub Sockets
    if pm is None:
        pm = messaging.PubMaster([
            'sendcan', 'controlsState', 'carState', 'carControl', 'carEvents',
            'carParams'
        ])

    if sm is None:
        sm = messaging.SubMaster(['thermal', 'health', 'liveCalibration', 'driverMonitoring', 'plan', 'pathPlan', \
                                  'gpsLocation'], ignore_alive=['gpsLocation'])

    if can_sock is None:
        can_timeout = None if os.environ.get('NO_CAN_TIMEOUT', False) else 100
        can_sock = messaging.sub_sock(service_list['can'].port,
                                      timeout=can_timeout)

    # wait for health and CAN packets
    hw_type = messaging.recv_one(sm.sock['health']).health.hwType
    is_panda_black = hw_type == log.HealthData.HwType.blackPanda
    print("Waiting for CAN messages...")
    get_one_can(can_sock)

    CI, CP = get_car(can_sock, pm.sock['sendcan'], is_panda_black)

    car_recognized = CP.carName != 'mock'
    # If stock camera is disconnected, we loaded car controls and it's not chffrplus
    controller_available = CP.enableCamera and CI.CC is not None and not passive
    read_only = not car_recognized or not controller_available or CP.dashcamOnly
    if read_only:
        CP.safetyModel = CP.safetyModelPassive

    # Write CarParams for radard and boardd safety mode
    params.put("CarParams", CP.to_bytes())
    params.put("LongitudinalControl",
               "1" if CP.openpilotLongitudinalControl else "0")

    CC = car.CarControl.new_message()
    AM = AlertManager()

    startup_alert = get_startup_alert(car_recognized, controller_available)
    AM.add(sm.frame, startup_alert, False)

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)

    if CP.lateralTuning.which() == 'pid':
        LaC = LatControlPID(CP)
    elif CP.lateralTuning.which() == 'indi':
        LaC = LatControlINDI(CP)
    elif CP.lateralTuning.which() == 'lqr':
        LaC = LatControlLQR(CP)

    driver_status = DriverStatus()
    is_rhd = params.get("IsRHD")
    if is_rhd is not None:
        driver_status.is_rhd = bool(int(is_rhd))

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False
    events_prev = []

    sm['pathPlan'].sensorValid = True
    sm['pathPlan'].posenetValid = True

    # detect sound card presence
    sounds_available = not os.path.isfile('/EON') or (
        os.path.isdir('/proc/asound/card0')
        and open('/proc/asound/card0/state').read().strip() == 'ONLINE')

    # controlsd is driven by can recv, expected at 100Hz
    rk = Ratekeeper(100, print_delay_threshold=None)

    prof = Profiler(False)  # off by default

    while True:
        start_time = sec_since_boot()
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter =\
          data_sample(CI, CC, sm, can_sock, cal_status, cal_perc, overtemp, free_space, low_battery,
                      driver_status, state, mismatch_counter, params)
        prof.checkpoint("Sample")

        # Create alerts
        if not sm.all_alive_and_valid():
            events.append(
                create_event('commIssue', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not sm['pathPlan'].mpcSolutionValid:
            events.append(
                create_event('plannerError',
                             [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
        if not sm['pathPlan'].sensorValid:
            events.append(
                create_event('sensorDataInvalid', [ET.NO_ENTRY, ET.PERMANENT]))
        if not sm['pathPlan'].paramsValid:
            events.append(create_event('vehicleModelInvalid', [ET.WARNING]))
        if not sm['pathPlan'].posenetValid:
            events.append(
                create_event('posenetInvalid', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not sm['plan'].radarValid:
            events.append(
                create_event('radarFault', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if sm['plan'].radarCanError:
            events.append(
                create_event('radarCanError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        if not CS.canValid:
            events.append(
                create_event('canError', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))
        if not sounds_available:
            events.append(
                create_event('soundsUnavailable', [ET.NO_ENTRY, ET.PERMANENT]))

        # Only allow engagement with brake pressed when stopped behind another stopped car
        if CS.brakePressed and sm[
                'plan'].vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
            events.append(
                create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not read_only:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(sm.frame, CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, driver_status, v_acc, a_acc, lac_log = \
          state_control(sm.frame, sm.rcv_frame, sm['plan'], sm['pathPlan'], CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM, rk,
                        driver_status, LaC, LoC, VM, read_only, is_metric, cal_perc)

        prof.checkpoint("State Control")

        # Publish data
        CC, events_prev = data_send(sm, pm, CS, CI, CP, VM, state, events,
                                    actuators, v_cruise_kph, rk, AM,
                                    driver_status, LaC, LoC, read_only,
                                    start_time, v_acc, a_acc, lac_log,
                                    events_prev)
        prof.checkpoint("Sent")

        rk.monitor_time()
        prof.display()
Пример #20
0
def controlsd_thread(gctx=None, rate=100):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    context = zmq.Context()
    params = Params()

    # Pub Sockets
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"

    # No sendcan if passive
    if not passive:
        sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
    else:
        sendcan = None

    # Sub sockets
    poller = zmq.Poller()
    thermal = messaging.sub_sock(context,
                                 service_list['thermal'].port,
                                 conflate=True,
                                 poller=poller)
    health = messaging.sub_sock(context,
                                service_list['health'].port,
                                conflate=True,
                                poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    driver_monitor = messaging.sub_sock(context,
                                        service_list['driverMonitoring'].port,
                                        conflate=True,
                                        poller=poller)
    plan_sock = messaging.sub_sock(context,
                                   service_list['plan'].port,
                                   conflate=True,
                                   poller=poller)
    path_plan_sock = messaging.sub_sock(context,
                                        service_list['pathPlan'].port,
                                        conflate=True,
                                        poller=poller)
    logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()
    CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(CP)
    AM = AlertManager()
    driver_status = DriverStatus()

    if not passive:
        AM.add("startup", False)

    # Write CarParams for radard and boardd safety mode
    params.put("CarParams", CP.to_bytes())
    params.put("LongitudinalControl",
               "1" if CP.openpilotLongitudinalControl else "0")

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False

    plan = messaging.new_message()
    plan.init('plan')
    path_plan = messaging.new_message()
    path_plan.init('pathPlan')

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    controls_params = params.get("ControlsParams")
    # Read angle offset from previous drive
    if controls_params is not None:
        controls_params = json.loads(controls_params)
        angle_offset = controls_params['angle_offset']
    else:
        angle_offset = 0.

    prof = Profiler(False)  # off by default

    while True:
        start_time = int(sec_since_boot() * 1e9)
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter, plan, path_plan  =\
          data_sample(CI, CC, plan_sock, path_plan_sock, thermal, cal, health, driver_monitor,
                      poller, cal_status, cal_perc, overtemp, free_space, low_battery, driver_status,
                      state, mismatch_counter, params, plan, path_plan)
        prof.checkpoint("Sample")

        path_plan_age = (start_time - path_plan.logMonoTime) / 1e9
        plan_age = (start_time - plan.logMonoTime) / 1e9
        if not path_plan.pathPlan.valid or plan_age > 0.5 or path_plan_age > 0.5:
            events.append(
                create_event('plannerError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        events += list(plan.plan.events)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        if CS.brakePressed and plan.plan.vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
            events.append(
                create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, driver_status, angle_offset, v_acc, a_acc = \
          state_control(plan.plan, path_plan.pathPlan, CS, CP, state, events, v_cruise_kph,
                        v_cruise_kph_last, AM, rk, driver_status,
                        LaC, LoC, VM, angle_offset, passive, is_metric, cal_perc)

        prof.checkpoint("State Control")

        # Publish data
        CC = data_send(plan, path_plan, CS, CI, CP, VM, state, events,
                       actuators, v_cruise_kph, rk, carstate, carcontrol,
                       live100, AM, driver_status, LaC, LoC, angle_offset,
                       passive, start_time, params, v_acc, a_acc)
        prof.checkpoint("Sent")

        rk.keep_time()  # Run at 100Hz
        prof.display()
Пример #21
0
def radard_thread(gctx=None):
  #print "===>>> File: controls/radard.py; FUnction: radard_thread"
  set_realtime_priority(1)

  # wait for stats about the car to come in from controls
  cloudlog.info("radard is waiting for CarParams")
  CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
  cloudlog.info("radard got CarParams")

  # import the radar from the fingerprint
  cloudlog.info("radard is importing %s", CP.radarName)
  exec('from selfdrive.radar.'+CP.radarName+'.interface import RadarInterface')

  context = zmq.Context()

  # *** subscribe to features and model from visiond
  model = messaging.sub_sock(context, service_list['model'].port)
  live100 = messaging.sub_sock(context, service_list['live100'].port)

  PP = PathPlanner()
  RI = RadarInterface()

  last_md_ts = 0
  last_l100_ts = 0

  # *** publish live20 and liveTracks
  live20 = messaging.pub_sock(context, service_list['live20'].port)
  liveTracks = messaging.pub_sock(context, service_list['liveTracks'].port)

  path_x = np.arange(0.0, 140.0, 0.1)    # 140 meters is max

  # Time-alignment
  rate = 20.   # model and radar are both at 20Hz
  tsv = 1./rate
  rdr_delay = 0.10   # radar data delay in s
  v_len = 20         # how many speed data points to remember for t alignment with rdr data

  enabled = 0
  steer_angle = 0.

  tracks = defaultdict(dict)
  
  # Kalman filter stuff: 
  ekfv = EKFV1D()
  speedSensorV = SimpleSensor(XV, 1, 2)

  # v_ego
  v_ego = None
  v_ego_array = np.zeros([2, v_len])
  v_ego_t_aligned = 0.

  rk = Ratekeeper(rate, print_delay_threshold=np.inf)
  while 1:
    rr = RI.update()

    ar_pts = {}
    for pt in rr.points:
      ar_pts[pt.trackId] = [pt.dRel + RDR_TO_LDR, pt.yRel, pt.vRel, pt.aRel, None, False, None]

    # receive the live100s
    l100 = messaging.recv_sock(live100)
    if l100 is not None:
      enabled = l100.live100.enabled
      v_ego = l100.live100.vEgo
      steer_angle = l100.live100.angleSteers

      v_ego_array = np.append(v_ego_array, [[v_ego], [float(rk.frame)/rate]], 1)
      v_ego_array = v_ego_array[:, 1:]

      last_l100_ts = l100.logMonoTime

    if v_ego is None:
      continue

    md = messaging.recv_sock(model)
    #print "============ RADAR Thread"
    #print md
    if md is not None:
      last_md_ts = md.logMonoTime

    # *** get path prediction from the model ***
    PP.update(sec_since_boot(), v_ego, md)

    # run kalman filter only if prob is high enough
    if PP.lead_prob > 0.7:
      ekfv.update(speedSensorV.read(PP.lead_dist, covar=PP.lead_var))
      ekfv.predict(tsv)
      ar_pts[VISION_POINT] = (float(ekfv.state[XV]), np.polyval(PP.d_poly, float(ekfv.state[XV])),
                              float(ekfv.state[SPEEDV]), np.nan, last_md_ts, np.nan, sec_since_boot())
    else:
      ekfv.state[XV] = PP.lead_dist
      ekfv.covar = (np.diag([PP.lead_var, ekfv.var_init]))
      ekfv.state[SPEEDV] = 0.
      if VISION_POINT in ar_pts:
        del ar_pts[VISION_POINT]

    # *** compute the likely path_y ***
    if enabled:    # use path from model path_poly
      path_y = np.polyval(PP.d_poly, path_x)
    else:          # use path from steer, set angle_offset to 0 since calibration does not exactly report the physical offset
      path_y = calc_lookahead_offset(v_ego, steer_angle, path_x, CP, angle_offset=0)[0]

    # *** remove missing points from meta data ***
    for ids in tracks.keys():
      if ids not in ar_pts:
        tracks.pop(ids, None)

    # *** compute the tracks ***
    for ids in ar_pts:
      # ignore the vision point for now
      if ids == VISION_POINT and not VISION_ONLY:
        continue
      elif ids != VISION_POINT and VISION_ONLY:
        continue
      rpt = ar_pts[ids]

      # align v_ego by a fixed time to align it with the radar measurement     
      cur_time = float(rk.frame)/rate
      v_ego_t_aligned = np.interp(cur_time - rdr_delay, v_ego_array[1], v_ego_array[0])
      d_path = np.sqrt(np.amin((path_x - rpt[0]) ** 2 + (path_y - rpt[1]) ** 2))

      # create the track if it doesn't exist or it's a new track
      if ids not in tracks or rpt[5] == 1:
        tracks[ids] = Track()
      tracks[ids].update(rpt[0], rpt[1], rpt[2], d_path, v_ego_t_aligned)

      # allow the vision model to remove the stationary flag if distance and rel speed roughly match
      if VISION_POINT in ar_pts:
        dist_to_vision = np.sqrt((0.5*(ar_pts[VISION_POINT][0] - rpt[0])) ** 2 + (2*(ar_pts[VISION_POINT][1] - rpt[1])) ** 2)
        rel_speed_diff = abs(ar_pts[VISION_POINT][2] - rpt[2])
        tracks[ids].mix_vision(dist_to_vision, rel_speed_diff)

    # publish tracks (debugging)
    dat = messaging.new_message()
    dat.init('liveTracks', len(tracks))
    for cnt, ids in enumerate(tracks.keys()):
      dat.liveTracks[cnt].trackId = ids
      dat.liveTracks[cnt].dRel = float(tracks[ids].dRel)
      dat.liveTracks[cnt].yRel = float(tracks[ids].yRel)
      dat.liveTracks[cnt].vRel = float(tracks[ids].vRel)
      dat.liveTracks[cnt].aRel = float(tracks[ids].aRel)
      dat.liveTracks[cnt].stationary = tracks[ids].stationary
      dat.liveTracks[cnt].oncoming = tracks[ids].oncoming
    liveTracks.send(dat.to_bytes())

    idens = tracks.keys()
    track_pts = np.array([tracks[iden].get_key_for_cluster() for iden in idens])

    # If we have multiple points, cluster them
    if len(track_pts) > 1:
      link = linkage_vector(track_pts, method='centroid')
      cluster_idxs = fcluster(link, 2.5, criterion='distance')
      clusters = [None]*max(cluster_idxs)

      for idx in xrange(len(track_pts)):
        cluster_i = cluster_idxs[idx]-1

        if clusters[cluster_i] == None:
          clusters[cluster_i] = Cluster()
        clusters[cluster_i].add(tracks[idens[idx]])
    elif len(track_pts) == 1:
      # TODO: why do we need this?
      clusters = [Cluster()]
      clusters[0].add(tracks[idens[0]])
    else:
      clusters = []

    # *** extract the lead car ***
    lead_clusters = [c for c in clusters
                     if c.is_potential_lead(v_ego)]
    lead_clusters.sort(key=lambda x: x.dRel)
    lead_len = len(lead_clusters)

    # *** extract the second lead from the whole set of leads ***
    lead2_clusters = [c for c in lead_clusters
                      if c.is_potential_lead2(lead_clusters)]
    lead2_clusters.sort(key=lambda x: x.dRel)
    lead2_len = len(lead2_clusters)

    # *** publish live20 ***
    dat = messaging.new_message()
    dat.init('live20')
    dat.live20.mdMonoTime = last_md_ts
    dat.live20.canMonoTimes = list(rr.canMonoTimes)
    dat.live20.l100MonoTime = last_l100_ts
    if lead_len > 0:
      lead_clusters[0].toLive20(dat.live20.leadOne)
      if lead2_len > 0:
        lead2_clusters[0].toLive20(dat.live20.leadTwo)
      else:
        dat.live20.leadTwo.status = False
    else:
      dat.live20.leadOne.status = False

    dat.live20.cumLagMs = -rk.remaining*1000.
    live20.send(dat.to_bytes())

    rk.monitor_time()
Пример #22
0
def controlsd_thread(gctx=None, rate=100):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    ##### AS
    context = zmq.Context()
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    carla_socket = context.socket(zmq.PAIR)
    carla_socket.bind("tcp://*:5560")

    is_metric = True
    passive = True
    ##### AS

    # No sendcan if passive
    if not passive:
        sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
    else:
        sendcan = None

    # Sub sockets
    poller = zmq.Poller()
    #thermal = messaging.sub_sock(context, service_list['thermal'].port, conflate=True, poller=poller)
    #health = messaging.sub_sock(context, service_list['health'].port, conflate=True, poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    #driver_monitor = messaging.sub_sock(context, service_list['driverMonitoring'].port, conflate=True, poller=poller)
    plan_sock = messaging.sub_sock(context,
                                   service_list['plan'].port,
                                   conflate=True,
                                   poller=poller)
    path_plan_sock = messaging.sub_sock(context,
                                        service_list['pathPlan'].port,
                                        conflate=True,
                                        poller=poller)
    #logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()
    CP = ToyotaInterface.get_params("TOYOTA PRIUS 2017", {})
    CP.steerRatio = 1.0
    CI = ToyotaInterface(CP, sendcan)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(CP)
    AM = AlertManager()

    if not passive:
        AM.add("startup", False)

    state = State.enabled
    soft_disable_timer = 0
    v_cruise_kph = 50  ##### !!! change
    v_cruise_kph_last = 0  ##### !! change
    cal_status = Calibration.INVALID
    cal_perc = 0

    plan = messaging.new_message()
    plan.init('plan')
    path_plan = messaging.new_message()
    path_plan.init('pathPlan')

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    angle_offset = 0.

    prof = Profiler(False)  # off by default

    startup = True  ##### AS
    while True:
        start_time = int(sec_since_boot() * 1e9)
        prof.checkpoint("Ratekeeper", ignore=True)

        # Sample data and compute car events
        CS, events, cal_status, cal_perc, plan, path_plan  =\
          data_sample(CI, CC, plan_sock, path_plan_sock, cal, poller, cal_status, cal_perc, state, plan, path_plan, v_cruise_kph)
        prof.checkpoint("Sample")

        ##### AS since we dont do preenabled state
        if startup:
            LaC.reset()
            LoC.reset(v_pid=CS.vEgo)
            if cal_status != Calibration.CALIBRATED:
                continue
            startup = False

        path_plan_age = (start_time - path_plan.logMonoTime) / 1e9
        plan_age = (start_time - plan.logMonoTime) / 1e9
        if not path_plan.pathPlan.valid or plan_age > 0.5 or path_plan_age > 0.5:
            print 'planner time too long'
            #events.append(create_event('plannerError', [ET.NO_ENTRY, ET.SOFT_DISABLE]))
        events += list(plan.plan.events)

        # Only allow engagement with brake pressed when stopped behind another stopped car
        #if CS.brakePressed and plan.plan.vTargetFuture >= STARTING_TARGET_SPEED and not CP.radarOffCan and CS.vEgo < 0.3:
        #  events.append(create_event('noTarget', [ET.NO_ENTRY, ET.IMMEDIATE_DISABLE]))

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # Compute actuators (runs PID loops and lateral MPC)
        actuators, v_cruise_kph, angle_offset, v_acc, a_acc = \
          state_control(plan.plan, path_plan.pathPlan, CS, CP, state, events, v_cruise_kph,
                        v_cruise_kph_last, AM, rk,
                        LaC, LoC, VM, angle_offset, passive, is_metric, cal_perc)

        prof.checkpoint("State Control")

        # Publish data
        CC = data_send(plan, path_plan, CS, CI, CP, VM, state, events,
                       actuators, v_cruise_kph, rk, carstate, carcontrol,
                       live100, AM, LaC, LoC, angle_offset, passive,
                       start_time, v_acc, a_acc, carla_socket)
        prof.checkpoint("Sent")

        rk.keep_time()  # Run at 100Hz, no 20 Hz
        prof.display()
Пример #23
0
def controlsd_thread(gctx=None, rate=100, default_bias=0.):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    context = zmq.Context()
    params = Params()

    # pub
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    livempc = messaging.pub_sock(context, service_list['liveMpc'].port)

    is_metric = params.get("IsMetric") == "1"
    passive = params.get("Passive") != "0"
    if not passive:
        while 1:
            try:
                sendcan = messaging.pub_sock(context,
                                             service_list['sendcan'].port)
                break
            except zmq.error.ZMQError:
                kill_defaultd()
    else:
        sendcan = None

    # sub
    poller = zmq.Poller()
    thermal = messaging.sub_sock(context,
                                 service_list['thermal'].port,
                                 conflate=True,
                                 poller=poller)
    health = messaging.sub_sock(context,
                                service_list['health'].port,
                                conflate=True,
                                poller=poller)
    cal = messaging.sub_sock(context,
                             service_list['liveCalibration'].port,
                             conflate=True,
                             poller=poller)
    driver_monitor = messaging.sub_sock(context,
                                        service_list['driverMonitoring'].port,
                                        conflate=True,
                                        poller=poller)
    gps_location = messaging.sub_sock(context,
                                      service_list['gpsLocationExternal'].port,
                                      conflate=True,
                                      poller=poller)

    logcan = messaging.sub_sock(context, service_list['can'].port)

    CC = car.CarControl.new_message()

    CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

    if CI is None:
        raise Exception("unsupported car")

    # if stock camera is connected, then force passive behavior
    if not CP.enableCamera:
        passive = True
        sendcan = None

    if passive:
        CP.safetyModel = car.CarParams.SafetyModels.noOutput

    fcw_enabled = params.get("IsFcwEnabled") == "1"
    geofence = None

    PL = Planner(CP, fcw_enabled)
    LoC = LongControl(CP, CI.compute_gb)
    VM = VehicleModel(CP)
    LaC = LatControl(VM)
    AM = AlertManager()
    driver_status = DriverStatus()

    if not passive:
        AM.add("startup", False)

    # write CarParams
    params.put("CarParams", CP.to_bytes())

    state = State.disabled
    soft_disable_timer = 0
    v_cruise_kph = 255
    v_cruise_kph_last = 0
    overtemp = False
    free_space = False
    cal_status = Calibration.INVALID
    cal_perc = 0
    mismatch_counter = 0
    low_battery = False

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)

    # learned angle offset
    angle_offset = default_bias
    calibration_params = params.get("CalibrationParams")
    if calibration_params:
        try:
            calibration_params = json.loads(calibration_params)
            angle_offset = calibration_params["angle_offset2"]
        except (ValueError, KeyError):
            pass

    prof = Profiler(False)  # off by default

    while 1:

        prof.checkpoint("Ratekeeper", ignore=True)

        # sample data and compute car events
        CS, events, cal_status, cal_perc, overtemp, free_space, low_battery, mismatch_counter = data_sample(
            CI, CC, thermal, cal, health, driver_monitor, gps_location, poller,
            cal_status, cal_perc, overtemp, free_space, low_battery,
            driver_status, geofence, state, mismatch_counter, params)
        prof.checkpoint("Sample")

        # define plan
        plan, plan_ts = calc_plan(CS, CP, events, PL, LaC, LoC, v_cruise_kph,
                                  driver_status, geofence)
        prof.checkpoint("Plan")

        if not passive:
            # update control state
            state, soft_disable_timer, v_cruise_kph, v_cruise_kph_last = \
              state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
            prof.checkpoint("State transition")

        # compute actuators
        actuators, v_cruise_kph, driver_status, angle_offset = state_control(
            plan, CS, CP, state, events, v_cruise_kph, v_cruise_kph_last, AM,
            rk, driver_status, PL, LaC, LoC, VM, angle_offset, passive,
            is_metric, cal_perc)
        prof.checkpoint("State Control")

        # publish data
        CC = data_send(PL.perception_state, plan, plan_ts, CS, CI, CP, VM,
                       state, events, actuators, v_cruise_kph, rk, carstate,
                       carcontrol, live100, livempc, AM, driver_status, LaC,
                       LoC, angle_offset, passive)
        prof.checkpoint("Sent")

        # *** run loop at fixed rate ***
        rk.keep_time()

        prof.display()
Пример #24
0
def main():
    set_core_affinity(1)
    set_realtime_priority(1)

    procs = {}
    crash_count = 0
    modem_killed = False
    modem_state = "ONLINE"
    androidLog = messaging.sub_sock('androidLog')

    while True:
        # check critical android services
        if any(p is None or not p.is_running()
               for p in procs.values()) or not len(procs):
            cur = {p: None for p in WATCHED_PROCS}
            for p in psutil.process_iter(attrs=['cmdline']):
                cmdline = None if not len(
                    p.info['cmdline']) else p.info['cmdline'][0]
                if cmdline in WATCHED_PROCS:
                    cur[cmdline] = p

            if len(procs):
                for p in WATCHED_PROCS:
                    if cur[p] != procs[p]:
                        cloudlog.event("android service pid changed",
                                       proc=p,
                                       cur=cur[p],
                                       prev=procs[p],
                                       error=True)
            procs.update(cur)

        # log caught NetworkPolicy exceptions
        msgs = messaging.drain_sock(androidLog)
        for m in msgs:
            try:
                if m.androidLog.tag == "NetworkPolicy" and m.androidLog.message.startswith(
                        "problem with advise persist threshold"):
                    cloudlog.event("network policy exception caught",
                                   androidLog=m.androidLog,
                                   error=True)
            except UnicodeDecodeError:
                pass

        if os.path.exists(MODEM_PATH):
            # check modem state
            state = get_modem_state()
            if state != modem_state and not modem_killed:
                cloudlog.event("modem state changed", state=state)
            modem_state = state

            # check modem crashes
            cnt = get_modem_crash_count()
            if cnt is not None:
                if cnt > crash_count:
                    cloudlog.event("modem crash", count=cnt)
                crash_count = cnt

            # handle excessive modem crashes
            if crash_count > MAX_MODEM_CRASHES and not modem_killed:
                cloudlog.event("killing modem", error=True)
                with open("/sys/kernel/debug/msm_subsys/modem", "w") as f:
                    f.write("put")
                modem_killed = True

        time.sleep(1)
Пример #25
0
def controlsd_thread(gctx, rate=100):
  # start the loop
  set_realtime_priority(2)

  context = zmq.Context()

  params = Params()

  # pub
  live100 = messaging.pub_sock(context, service_list['live100'].port)
  carstate = messaging.pub_sock(context, service_list['carState'].port)
  carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
  livempc = messaging.pub_sock(context, service_list['liveMpc'].port)

  passive = params.get("Passive") != "0"
  if not passive:
    sendcan = messaging.pub_sock(context, service_list['sendcan'].port)
  else:
    sendcan = None

  # sub
  thermal = messaging.sub_sock(context, service_list['thermal'].port)
  health = messaging.sub_sock(context, service_list['health'].port)
  cal = messaging.sub_sock(context, service_list['liveCalibration'].port)
  logcan = messaging.sub_sock(context, service_list['can'].port)

  CC = car.CarControl.new_message()

  CI, CP = get_car(logcan, sendcan, 1.0 if passive else None)

  if CI is None:
    if passive:
      return
    else:
      raise Exception("unsupported car")

  if passive:
    CP.safetyModel = car.CarParams.SafetyModels.noOutput

  fcw_enabled = params.get("IsFcwEnabled") == "1"

  PL = Planner(CP, fcw_enabled)
  LoC = LongControl(CP, CI.compute_gb)
  VM = VehicleModel(CP)
  LaC = LatControl(VM)
  AM = AlertManager()

  if not passive:
    AM.add("startup", False)

  # write CarParams
  params.put("CarParams", CP.to_bytes())

  state = State.DISABLED
  soft_disable_timer = 0
  v_cruise_kph = 255
  overtemp = False
  free_space = False
  cal_status = Calibration.UNCALIBRATED
  rear_view_toggle = False
  rear_view_allowed = params.get("IsRearViewMirror") == "1"

  # 0.0 - 1.0
  awareness_status = 1.

  rk = Ratekeeper(rate, print_delay_threshold=2./1000)

  # learned angle offset
  angle_offset = 1.5  # Default model bias
  calibration_params = params.get("CalibrationParams")
  if calibration_params:
    try:
      calibration_params = json.loads(calibration_params)
      angle_offset = calibration_params["angle_offset"]
    except (ValueError, KeyError):
      pass

  prof = Profiler()

  while 1:

    prof.reset()  # avoid memory leak

    # sample data and compute car events
    CS, events, cal_status, overtemp, free_space = data_sample(CI, CC, thermal, health, cal, cal_status,
                                                               overtemp, free_space)
    prof.checkpoint("Sample")

    # define plan
    plan, plan_ts = calc_plan(CS, events, PL, LoC, v_cruise_kph, awareness_status)
    prof.checkpoint("Plan")

    if not passive:
      # update control state
      state, soft_disable_timer, v_cruise_kph = state_transition(CS, CP, state, events, soft_disable_timer, v_cruise_kph, AM)
      prof.checkpoint("State transition")

    # compute actuators
    actuators, v_cruise_kph, awareness_status, angle_offset, rear_view_toggle = state_control(plan, CS, CP, state, events, v_cruise_kph,
                                                                            AM, rk, awareness_status, PL, LaC, LoC, VM, angle_offset,
                                                                            rear_view_allowed, rear_view_toggle)
    prof.checkpoint("State Control")

    # publish data
    CC = data_send(plan, plan_ts, CS, CI, CP, state, events, actuators, v_cruise_kph,
                   rk, carstate, carcontrol, live100, livempc, AM, rear_view_allowed,
                   rear_view_toggle, awareness_status, LaC, LoC, angle_offset, passive)
    prof.checkpoint("Sent")

    # *** run loop at fixed rate ***
    if rk.keep_time():
      prof.display()
Пример #26
0
def main(sm=None, pm=None):
    gc.disable()
    set_realtime_priority(5)

    if sm is None:
        sm = messaging.SubMaster(['liveLocationKalman', 'carState'],
                                 poll=['liveLocationKalman'])
    if pm is None:
        pm = messaging.PubMaster(['liveParameters'])

    params_reader = Params()
    # wait for stats about the car to come in from controls
    cloudlog.info("paramsd is waiting for CarParams")
    CP = car.CarParams.from_bytes(params_reader.get("CarParams", block=True))
    cloudlog.info("paramsd got CarParams")

    min_sr, max_sr = 0.5 * CP.steerRatio, 2.0 * CP.steerRatio

    params = params_reader.get("LiveParameters")

    # Check if car model matches
    if params is not None:
        params = json.loads(params)
        if params.get('carFingerprint', None) != CP.carFingerprint:
            cloudlog.info("Parameter learner found parameters for wrong car.")
            params = None

    # Check if starting values are sane
    if params is not None:
        try:
            angle_offset_sane = abs(params.get('angleOffsetAverageDeg')) < 10.0
            steer_ratio_sane = min_sr <= params['steerRatio'] <= max_sr
            params_sane = angle_offset_sane and steer_ratio_sane
            if not params_sane:
                cloudlog.info(f"Invalid starting values found {params}")
                params = None
        except Exception as e:
            cloudlog.info(f"Error reading params {params}: {str(e)}")
            params = None

    # TODO: cache the params with the capnp struct
    if params is None:
        params = {
            'carFingerprint': CP.carFingerprint,
            'steerRatio': CP.steerRatio,
            'stiffnessFactor': 1.0,
            'angleOffsetAverageDeg': 0.0,
        }
        cloudlog.info("Parameter learner resetting to default values")

    # When driving in wet conditions the stiffness can go down, and then be too low on the next drive
    # Without a way to detect this we have to reset the stiffness every drive
    params['stiffnessFactor'] = 1.0
    learner = ParamsLearner(CP, params['steerRatio'],
                            params['stiffnessFactor'],
                            math.radians(params['angleOffsetAverageDeg']))
    angle_offset_average = params['angleOffsetAverageDeg']
    angle_offset = angle_offset_average

    while True:
        sm.update()
        for which in sorted(sm.updated.keys(),
                            key=lambda x: sm.logMonoTime[x]):
            if sm.updated[which]:
                t = sm.logMonoTime[which] * 1e-9
                learner.handle_log(t, which, sm[which])

        if sm.updated['liveLocationKalman']:
            x = learner.kf.x
            P = np.sqrt(learner.kf.P.diagonal())
            if not all(map(math.isfinite, x)):
                cloudlog.error(
                    "NaN in liveParameters estimate. Resetting to default values"
                )
                learner = ParamsLearner(CP, CP.steerRatio, 1.0, 0.0)
                x = learner.kf.x

            angle_offset_average = clip(
                math.degrees(x[States.ANGLE_OFFSET]),
                angle_offset_average - MAX_ANGLE_OFFSET_DELTA,
                angle_offset_average + MAX_ANGLE_OFFSET_DELTA)
            angle_offset = clip(
                math.degrees(x[States.ANGLE_OFFSET] +
                             x[States.ANGLE_OFFSET_FAST]),
                angle_offset - MAX_ANGLE_OFFSET_DELTA,
                angle_offset + MAX_ANGLE_OFFSET_DELTA)

            msg = messaging.new_message('liveParameters')
            msg.logMonoTime = sm.logMonoTime['carState']

            liveParameters = msg.liveParameters
            liveParameters.posenetValid = True
            liveParameters.sensorValid = True
            liveParameters.steerRatio = float(x[States.STEER_RATIO])
            liveParameters.stiffnessFactor = float(x[States.STIFFNESS])
            liveParameters.roll = float(x[States.ROAD_ROLL])
            liveParameters.angleOffsetAverageDeg = angle_offset_average
            liveParameters.angleOffsetDeg = angle_offset
            liveParameters.valid = all((
                abs(liveParameters.angleOffsetAverageDeg) < 10.0,
                abs(liveParameters.angleOffsetDeg) < 10.0,
                0.2 <= liveParameters.stiffnessFactor <= 5.0,
                min_sr <= liveParameters.steerRatio <= max_sr,
            ))
            liveParameters.steerRatioStd = float(P[States.STEER_RATIO])
            liveParameters.stiffnessFactorStd = float(P[States.STIFFNESS])
            liveParameters.angleOffsetAverageStd = float(
                P[States.ANGLE_OFFSET])
            liveParameters.angleOffsetFastStd = float(
                P[States.ANGLE_OFFSET_FAST])

            if sm.frame % 1200 == 0:  # once a minute
                params = {
                    'carFingerprint': CP.carFingerprint,
                    'steerRatio': liveParameters.steerRatio,
                    'stiffnessFactor': liveParameters.stiffnessFactor,
                    'angleOffsetAverageDeg':
                    liveParameters.angleOffsetAverageDeg,
                }
                put_nonblocking("LiveParameters", json.dumps(params))

            pm.send('liveParameters', msg)
Пример #27
0
def radard_thread(gctx=None):
  set_realtime_priority(2)

  # wait for stats about the car to come in from controls
  cloudlog.info("radard is waiting for CarParams")
  CP = car.CarParams.from_bytes(Params().get("CarParams", block=True))
  mocked= CP.radarName == "mock"
  VM = VehicleModel(CP)
  cloudlog.info("radard got CarParams")

  # import the radar from the fingerprint
  cloudlog.info("radard is importing %s", CP.radarName)
  exec('from selfdrive.radar.'+CP.radarName+'.interface import RadarInterface')

  context = zmq.Context()

  # *** subscribe to features and model from visiond
  poller = zmq.Poller()
  model = messaging.sub_sock(context, service_list['model'].port, conflate=True, poller=poller)
  live100 = messaging.sub_sock(context, service_list['live100'].port, conflate=True, poller=poller)

  PP = PathPlanner()
  RI = RadarInterface()

  last_md_ts = 0
  last_l100_ts = 0

  # *** publish live20 and liveTracks
  live20 = messaging.pub_sock(context, service_list['live20'].port)
  liveTracks = messaging.pub_sock(context, service_list['liveTracks'].port)

  path_x = np.arange(0.0, 140.0, 0.1)    # 140 meters is max

  # Time-alignment
  rate = 20.   # model and radar are both at 20Hz
  tsv = 1./rate
  v_len = 20         # how many speed data points to remember for t alignment with rdr data

  active = 0
  steer_angle = 0.
  steer_override = False

  tracks = defaultdict(dict)

  # Kalman filter stuff:
  ekfv = EKFV1D()
  speedSensorV = SimpleSensor(XV, 1, 2)

  # v_ego
  v_ego = None
  v_ego_array = np.zeros([2, v_len])
  v_ego_t_aligned = 0.

  rk = Ratekeeper(rate, print_delay_threshold=np.inf)
  while 1:
    rr = RI.update()

    ar_pts = {}
    for pt in rr.points:
      ar_pts[pt.trackId] = [pt.dRel + RDR_TO_LDR, pt.yRel, pt.vRel, pt.measured]

    # receive the live100s
    l100 = None
    md = None

    for socket, event in poller.poll(0):
      if socket is live100:
        l100 = messaging.recv_one(socket)
      elif socket is model:
        md = messaging.recv_one(socket)

    if l100 is not None:
      active = l100.live100.active
      v_ego = l100.live100.vEgo
      steer_angle = l100.live100.angleSteers
      steer_override = l100.live100.steerOverride

      v_ego_array = np.append(v_ego_array, [[v_ego], [float(rk.frame)/rate]], 1)
      v_ego_array = v_ego_array[:, 1:]

      last_l100_ts = l100.logMonoTime

    if v_ego is None:
      continue

    if md is not None:
      last_md_ts = md.logMonoTime

    # *** get path prediction from the model ***
    PP.update(v_ego, md)

    # run kalman filter only if prob is high enough
    if PP.lead_prob > 0.7:
      ekfv.update(speedSensorV.read(PP.lead_dist, covar=PP.lead_var))
      ekfv.predict(tsv)
      ar_pts[VISION_POINT] = (float(ekfv.state[XV]), np.polyval(PP.d_poly, float(ekfv.state[XV])),
                              float(ekfv.state[SPEEDV]), False)
    else:
      ekfv.state[XV] = PP.lead_dist
      ekfv.covar = (np.diag([PP.lead_var, ekfv.var_init]))
      ekfv.state[SPEEDV] = 0.
      if VISION_POINT in ar_pts:
        del ar_pts[VISION_POINT]

    # *** compute the likely path_y ***
    if (active and not steer_override) or mocked:
      # use path from model (always when mocking as steering is too noisy)
      path_y = np.polyval(PP.d_poly, path_x)
    else:
      # use path from steer, set angle_offset to 0 it does not only report the physical offset
      path_y = calc_lookahead_offset(v_ego, steer_angle, path_x, VM, angle_offset=0)[0]

    # *** remove missing points from meta data ***
    for ids in tracks.keys():
      if ids not in ar_pts:
        tracks.pop(ids, None)

    # *** compute the tracks ***
    for ids in ar_pts:
      # ignore standalone vision point, unless we are mocking the radar
      if ids == VISION_POINT and not mocked:
        continue
      rpt = ar_pts[ids]

      # align v_ego by a fixed time to align it with the radar measurement
      cur_time = float(rk.frame)/rate
      v_ego_t_aligned = np.interp(cur_time - RI.delay, v_ego_array[1], v_ego_array[0])
      d_path = np.sqrt(np.amin((path_x - rpt[0]) ** 2 + (path_y - rpt[1]) ** 2))
      # add sign
      d_path *= np.sign(rpt[1] - np.interp(rpt[0], path_x, path_y))

      # create the track if it doesn't exist or it's a new track
      if ids not in tracks:
        tracks[ids] = Track()
      tracks[ids].update(rpt[0], rpt[1], rpt[2], d_path, v_ego_t_aligned, rpt[3], steer_override)

    # allow the vision model to remove the stationary flag if distance and rel speed roughly match
    if VISION_POINT in ar_pts:
      fused_id = None
      best_score = NO_FUSION_SCORE
      for ids in tracks:
        dist_to_vision = np.sqrt((0.5*(ar_pts[VISION_POINT][0] - tracks[ids].dRel)) ** 2 + (2*(ar_pts[VISION_POINT][1] - tracks[ids].yRel)) ** 2)
        rel_speed_diff = abs(ar_pts[VISION_POINT][2] - tracks[ids].vRel)
        tracks[ids].update_vision_score(dist_to_vision, rel_speed_diff)
        if best_score > tracks[ids].vision_score:
          fused_id = ids
          best_score = tracks[ids].vision_score

      if fused_id is not None:
        tracks[fused_id].vision_cnt += 1
        tracks[fused_id].update_vision_fusion()

    if DEBUG:
      print "NEW CYCLE"
      if VISION_POINT in ar_pts:
        print "vision", ar_pts[VISION_POINT]

    idens = tracks.keys()
    track_pts = np.array([tracks[iden].get_key_for_cluster() for iden in idens])

    # If we have multiple points, cluster them
    if len(track_pts) > 1:
      link = linkage_vector(track_pts, method='centroid')
      cluster_idxs = fcluster(link, 2.5, criterion='distance')
      clusters = [None]*max(cluster_idxs)

      for idx in xrange(len(track_pts)):
        cluster_i = cluster_idxs[idx]-1

        if clusters[cluster_i] == None:
          clusters[cluster_i] = Cluster()
        clusters[cluster_i].add(tracks[idens[idx]])
    elif len(track_pts) == 1:
      # TODO: why do we need this?
      clusters = [Cluster()]
      clusters[0].add(tracks[idens[0]])
    else:
      clusters = []

    if DEBUG:
      for i in clusters:
        print i
    # *** extract the lead car ***
    lead_clusters = [c for c in clusters
                     if c.is_potential_lead(v_ego)]
    lead_clusters.sort(key=lambda x: x.dRel)
    lead_len = len(lead_clusters)

    # *** extract the second lead from the whole set of leads ***
    lead2_clusters = [c for c in lead_clusters
                      if c.is_potential_lead2(lead_clusters)]
    lead2_clusters.sort(key=lambda x: x.dRel)
    lead2_len = len(lead2_clusters)

    # *** publish live20 ***
    dat = messaging.new_message()
    dat.init('live20')
    dat.live20.mdMonoTime = last_md_ts
    dat.live20.canMonoTimes = list(rr.canMonoTimes)
    dat.live20.radarErrors = list(rr.errors)
    dat.live20.l100MonoTime = last_l100_ts
    if lead_len > 0:
      lead_clusters[0].toLive20(dat.live20.leadOne)
      if lead2_len > 0:
        lead2_clusters[0].toLive20(dat.live20.leadTwo)
      else:
        dat.live20.leadTwo.status = False
    else:
      dat.live20.leadOne.status = False

    dat.live20.cumLagMs = -rk.remaining*1000.
    live20.send(dat.to_bytes())

    # *** publish tracks for UI debugging (keep last) ***
    dat = messaging.new_message()
    dat.init('liveTracks', len(tracks))

    for cnt, ids in enumerate(tracks.keys()):
      if DEBUG:
        print "id: %4.0f x:  %4.1f  y: %4.1f  vr: %4.1f d: %4.1f  va: %4.1f  vl: %4.1f  vlk: %4.1f alk: %4.1f  s: %1.0f" % \
          (ids, tracks[ids].dRel, tracks[ids].yRel, tracks[ids].vRel,
           tracks[ids].dPath, tracks[ids].vLat,
           tracks[ids].vLead, tracks[ids].vLeadK,
           tracks[ids].aLeadK,
           tracks[ids].stationary)
      dat.liveTracks[cnt].trackId = ids
      dat.liveTracks[cnt].dRel = float(tracks[ids].dRel)
      dat.liveTracks[cnt].yRel = float(tracks[ids].yRel)
      dat.liveTracks[cnt].vRel = float(tracks[ids].vRel)
      dat.liveTracks[cnt].aRel = float(tracks[ids].aRel)
      dat.liveTracks[cnt].stationary = tracks[ids].stationary
      dat.liveTracks[cnt].oncoming = tracks[ids].oncoming
    liveTracks.send(dat.to_bytes())

    rk.monitor_time()
Пример #28
0
def main():
    set_core_affinity(int(os.getenv("CORE", "3")))
    set_realtime_priority(1)

    while True:
        time.sleep(0.000001)
Пример #29
0
def dmonitoringd_thread(sm=None, pm=None):
    gc.disable()

    # start the loop
    set_realtime_priority(3)

    params = Params()

    # Pub/Sub Sockets
    if pm is None:
        pm = messaging.PubMaster(['dMonitoringState'])

    if sm is None:
        sm = messaging.SubMaster(
            ['driverState', 'liveCalibration', 'carState', 'model'])

    driver_status = DriverStatus()
    is_rhd = params.get("IsRHD")
    if is_rhd is not None:
        driver_status.is_rhd_region = bool(int(is_rhd))
        driver_status.is_rhd_region_checked = True

    sm['liveCalibration'].calStatus = Calibration.INVALID
    sm['carState'].vEgo = 0.
    sm['carState'].cruiseState.enabled = False
    sm['carState'].cruiseState.speed = 0.
    sm['carState'].buttonEvents = []
    sm['carState'].steeringPressed = False
    sm['carState'].standstill = True

    cal_rpy = [0, 0, 0]
    v_cruise_last = 0
    driver_engaged = False

    # 10Hz <- dmonitoringmodeld
    while True:
        sm.update()

        # Handle calibration
        if sm.updated['liveCalibration']:
            if sm['liveCalibration'].calStatus == Calibration.CALIBRATED:
                if len(sm['liveCalibration'].rpyCalib) == 3:
                    cal_rpy = sm['liveCalibration'].rpyCalib

        # Get interaction
        if sm.updated['carState']:
            v_cruise = sm['carState'].cruiseState.speed
            driver_engaged = len(sm['carState'].buttonEvents) > 0 or \
                              v_cruise != v_cruise_last or \
                              sm['carState'].steeringPressed
            if driver_engaged:
                _ = driver_status.update([], True,
                                         sm['carState'].cruiseState.enabled,
                                         sm['carState'].standstill)
            v_cruise_last = v_cruise

        # Get model meta
        if sm.updated['model']:
            driver_status.set_policy(sm['model'])

        # Get data from dmonitoringmodeld
        if sm.updated['driverState']:
            events = []
            driver_status.get_pose(sm['driverState'], cal_rpy,
                                   sm['carState'].vEgo,
                                   sm['carState'].cruiseState.enabled)
            # Block any engage after certain distrations
            if driver_status.terminal_alert_cnt >= MAX_TERMINAL_ALERTS or driver_status.terminal_time >= MAX_TERMINAL_DURATION:
                events.append(create_event("tooDistracted", [ET.NO_ENTRY]))
            # Update events from driver state
            events = driver_status.update(events, driver_engaged,
                                          sm['carState'].cruiseState.enabled,
                                          sm['carState'].standstill)

            # dMonitoringState packet
            dat = messaging.new_message('dMonitoringState')
            dat.dMonitoringState = {
                "events":
                events,
                "faceDetected":
                driver_status.face_detected,
                "isDistracted":
                driver_status.driver_distracted,
                "awarenessStatus":
                driver_status.awareness,
                "isRHD":
                driver_status.is_rhd_region,
                "rhdChecked":
                driver_status.is_rhd_region_checked,
                "posePitchOffset":
                driver_status.pose.pitch_offseter.filtered_stat.mean(),
                "posePitchValidCount":
                driver_status.pose.pitch_offseter.filtered_stat.n,
                "poseYawOffset":
                driver_status.pose.yaw_offseter.filtered_stat.mean(),
                "poseYawValidCount":
                driver_status.pose.yaw_offseter.filtered_stat.n,
                "stepChange":
                driver_status.step_change,
                "awarenessActive":
                driver_status.awareness_active,
                "awarenessPassive":
                driver_status.awareness_passive,
                "isLowStd":
                driver_status.pose.low_std,
                "hiStdCount":
                driver_status.hi_stds,
                "isPreview":
                False,
            }
            pm.send('dMonitoringState', dat)
Пример #30
0
def controlsd_thread(gctx, rate=100):  #rate in Hz
    # *** log ***
    context = zmq.Context()
    live100 = messaging.pub_sock(context, service_list['live100'].port)
    carstate = messaging.pub_sock(context, service_list['carState'].port)
    carcontrol = messaging.pub_sock(context, service_list['carControl'].port)
    sendcan = messaging.pub_sock(context, service_list['sendcan'].port)

    thermal = messaging.sub_sock(context, service_list['thermal'].port)
    live20 = messaging.sub_sock(context, service_list['live20'].port)
    model = messaging.sub_sock(context, service_list['model'].port)
    health = messaging.sub_sock(context, service_list['health'].port)
    logcan = messaging.sub_sock(context, service_list['can'].port)

    # connects to can and sendcan
    CI = CarInterface()
    VP = CI.getVehicleParams()

    PP = PathPlanner(model)
    AC = AdaptiveCruise(live20)

    AM = AlertManager()

    LoC = LongControl()
    LaC = LatControl()

    # controls enabled state
    enabled = False
    last_enable_request = 0

    # learned angle offset
    angle_offset = 0

    # rear view camera state
    rear_view_toggle = False

    v_cruise_kph = 255

    # 0.0 - 1.0
    awareness_status = 0.0

    soft_disable_timer = None

    # Is cpu temp too high to enable?
    overtemp = False
    free_space = 1.0

    # start the loop
    set_realtime_priority(2)

    rk = Ratekeeper(rate, print_delay_threshold=2. / 1000)
    while 1:
        prof = Profiler()
        cur_time = sec_since_boot()

        # read CAN
        # CS = CI.update()
        CS = car.CarState.new_message()
        CS.vEgo = 13

        for a in messaging.drain_sock(logcan):
            CS.steeringAngle = a.carState.steeringAngle

        # broadcast carState
        cs_send = messaging.new_message()
        cs_send.init('carState')
        cs_send.carState = CS  # copy?
        carstate.send(cs_send.to_bytes())

        prof.checkpoint("CarInterface")

        # did it request to enable?
        enable_request, enable_condition = False, False

        if enabled:
            # gives the user 6 minutes
            # awareness_status -= 1.0/(100*60*6)
            if awareness_status <= 0.:
                # AM.add("driverDistracted", enabled)
                awareness_status = 1.0

        # reset awareness status on steering
        if CS.steeringPressed:
            awareness_status = 1.0

        # handle button presses
        for b in CS.buttonEvents:
            print b

            # reset awareness on any user action
            awareness_status = 1.0

            # button presses for rear view
            if b.type == "leftBlinker" or b.type == "rightBlinker":
                if b.pressed:
                    rear_view_toggle = True
                else:
                    rear_view_toggle = False

            if b.type == "altButton1" and b.pressed:
                rear_view_toggle = not rear_view_toggle

            if not VP.brake_only and enabled and not b.pressed:
                if b.type == "accelCruise":
                    v_cruise_kph = v_cruise_kph - (
                        v_cruise_kph % V_CRUISE_DELTA) + V_CRUISE_DELTA
                elif b.type == "decelCruise":
                    v_cruise_kph = v_cruise_kph - (
                        v_cruise_kph % V_CRUISE_DELTA) - V_CRUISE_DELTA
                v_cruise_kph = clip(v_cruise_kph, V_CRUISE_MIN, V_CRUISE_MAX)

            if not enabled and b.type in ["accelCruise", "decelCruise"
                                          ] and not b.pressed:
                enable_request = True

            # do disable on button down
            if b.type == "cancel" and b.pressed:
                AM.add("disable", enabled)

        # Hack-hack
        if not enabled:
            enable_request = True

        prof.checkpoint("Buttons")

        # *** health checking logic ***
        hh = messaging.recv_sock(health)
        if hh is not None:
            # if the board isn't allowing controls but somehow we are enabled!
            if not hh.health.controlsAllowed and enabled:
                AM.add("controlsMismatch", enabled)

        # *** thermal checking logic ***

        # thermal data, checked every second
        td = messaging.recv_sock(thermal)
        if False and td is not None:
            # Check temperature.
            overtemp = any(t > 950 for t in (td.thermal.cpu0, td.thermal.cpu1,
                                             td.thermal.cpu2, td.thermal.cpu3,
                                             td.thermal.mem, td.thermal.gpu))
            # under 15% of space free
            free_space = td.thermal.freeSpace

        prof.checkpoint("Health")

        # *** getting model logic ***
        PP.update(cur_time, CS.vEgo)

        if rk.frame % 5 == 2:
            # *** run this at 20hz again ***
            angle_offset = learn_angle_offset(enabled, CS.vEgo, angle_offset,
                                              np.asarray(PP.d_poly), LaC.y_des,
                                              CS.steeringPressed)

        # disable if the pedals are pressed while engaged, this is a user disable
        if enabled:
            if CS.gasPressed or CS.brakePressed:
                AM.add("disable", enabled)

        if enable_request:
            # check for pressed pedals
            if CS.gasPressed or CS.brakePressed:
                AM.add("pedalPressed", enabled)
                enable_request = False
            else:
                print "enabled pressed at", cur_time
                last_enable_request = cur_time

            # don't engage with less than 15% free
            if free_space < 0.15:
                AM.add("outOfSpace", enabled)
                enable_request = False

        if VP.brake_only:
            enable_condition = ((cur_time - last_enable_request) <
                                0.2) and CS.cruiseState.enabled
        else:
            enable_condition = enable_request

        if enable_request or enable_condition or enabled:
            # add all alerts from car
            for alert in CS.errors:
                AM.add(alert, enabled)

            if False and AC.dead:
                AM.add("radarCommIssue", enabled)

            if PP.dead:
                AM.add("modelCommIssue", enabled)

            if overtemp:
                AM.add("overheat", enabled)

        prof.checkpoint("Model")

        if enable_condition and not enabled and not AM.alertPresent():
            print "*** enabling controls"

            # beep for enabling
            AM.add("enable", enabled)

            # enable both lateral and longitudinal controls
            enabled = True

            # on activation, let's always set v_cruise from where we are, even if PCM ACC is active
            v_cruise_kph = int(
                round(
                    max(CS.vEgo * CV.MS_TO_KPH * VP.ui_speed_fudge,
                        V_CRUISE_ENABLE_MIN)))

            # 6 minutes driver you're on
            awareness_status = 1.0

            # reset the PID loops
            LaC.reset()
            # start long control at actual speed
            LoC.reset(v_pid=CS.vEgo)

        if VP.brake_only and CS.cruiseState.enabled:
            v_cruise_kph = CS.cruiseState.speed * CV.MS_TO_KPH

        # *** put the adaptive in adaptive cruise control ***
        AC.update(cur_time, CS.vEgo, CS.steeringAngle, LoC.v_pid,
                  awareness_status, VP)

        prof.checkpoint("AdaptiveCruise")

        # *** gas/brake PID loop ***
        final_gas, final_brake = LoC.update(enabled, CS.vEgo, v_cruise_kph,
                                            AC.v_target_lead, AC.a_target,
                                            AC.jerk_factor, VP)

        # *** steering PID loop ***
        final_steer, sat_flag = LaC.update(enabled, CS.vEgo, CS.steeringAngle,
                                           CS.steeringPressed, PP.d_poly,
                                           angle_offset, VP)

        prof.checkpoint("PID")

        # ***** handle alerts ****
        # send a "steering required alert" if saturation count has reached the limit
        if False and sat_flag:
            AM.add("steerSaturated", enabled)

        if enabled and AM.alertShouldDisable():
            print "DISABLING IMMEDIATELY ON ALERT"
            enabled = False

        if enabled and AM.alertShouldSoftDisable():
            if soft_disable_timer is None:
                soft_disable_timer = 3 * rate
            elif soft_disable_timer == 0:
                print "SOFT DISABLING ON ALERT"
                enabled = False
            else:
                soft_disable_timer -= 1
        else:
            soft_disable_timer = None

        # *** push the alerts to current ***
        alert_text_1, alert_text_2, visual_alert, audible_alert = AM.process_alerts(
            cur_time)

        # ***** control the car *****
        CC = car.CarControl.new_message()

        CC.enabled = enabled

        CC.gas = float(final_gas)
        CC.brake = float(final_brake)
        CC.steeringTorque = float(final_steer)

        CC.cruiseControl.override = True
        CC.cruiseControl.cancel = bool(
            (not VP.brake_only)
            or (not enabled and CS.cruiseState.enabled
                ))  # always cancel if we have an interceptor
        CC.cruiseControl.speedOverride = float((LoC.v_pid - .3) if (
            VP.brake_only and final_brake == 0.) else 0.0)
        CC.cruiseControl.accelOverride = float(AC.a_pcm)

        CC.hudControl.setSpeed = float(v_cruise_kph * CV.KPH_TO_MS)
        CC.hudControl.speedVisible = enabled
        CC.hudControl.lanesVisible = enabled
        CC.hudControl.leadVisible = bool(AC.has_lead)

        CC.hudControl.visualAlert = visual_alert
        CC.hudControl.audibleAlert = audible_alert

        # this alert will apply next controls cycle
        #if not CI.apply(CC):
        #  AM.add("controlsFailed", enabled)

        # broadcast carControl
        cc_send = messaging.new_message()
        cc_send.init('carControl')
        cc_send.carControl = CC  # copy?
        #carcontrol.send(cc_send.to_bytes())
        sendcan.send(cc_send.to_bytes())

        prof.checkpoint("CarControl")

        # ***** publish state to logger *****

        # publish controls state at 100Hz
        dat = messaging.new_message()
        dat.init('live100')

        # show rear view camera on phone if in reverse gear or when button is pressed
        dat.live100.rearViewCam = ('reverseGear'
                                   in CS.errors) or rear_view_toggle
        dat.live100.alertText1 = alert_text_1
        dat.live100.alertText2 = alert_text_2
        dat.live100.awarenessStatus = max(awareness_status,
                                          0.0) if enabled else 0.0

        # what packets were used to process
        dat.live100.canMonoTimes = list(CS.canMonoTimes)
        dat.live100.mdMonoTime = PP.logMonoTime
        dat.live100.l20MonoTime = AC.logMonoTime

        # if controls is enabled
        dat.live100.enabled = enabled

        # car state
        dat.live100.vEgo = CS.vEgo
        dat.live100.angleSteers = CS.steeringAngle
        dat.live100.steerOverride = CS.steeringPressed

        # longitudinal control state
        dat.live100.vPid = float(LoC.v_pid)
        dat.live100.vCruise = float(v_cruise_kph)
        dat.live100.upAccelCmd = float(LoC.Up_accel_cmd)
        dat.live100.uiAccelCmd = float(LoC.Ui_accel_cmd)

        # lateral control state
        dat.live100.yActual = float(LaC.y_actual)
        dat.live100.yDes = float(LaC.y_des)
        dat.live100.upSteer = float(LaC.Up_steer)
        dat.live100.uiSteer = float(LaC.Ui_steer)

        # processed radar state, should add a_pcm?
        dat.live100.vTargetLead = float(AC.v_target_lead)
        dat.live100.aTargetMin = float(AC.a_target[0])
        dat.live100.aTargetMax = float(AC.a_target[1])
        dat.live100.jerkFactor = float(AC.jerk_factor)

        # lag
        dat.live100.cumLagMs = -rk.remaining * 1000.

        live100.send(dat.to_bytes())

        prof.checkpoint("Live100")

        # *** run loop at fixed rate ***
        if rk.keep_time():
            prof.display()