Пример #1
0
def main():
    args = get_args()
    print_args(args)

    log_dir = create_log_dir(args)
    if not args.evaluate:
        writer = SummaryWriter(log_dir)
    SEED = 721
    env = make_env(args)  # "LaserTag-small2-v0"   "SlimeVolleyPixel-v0"

    print(env.observation_space, env.action_space)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    if args.evaluate:
        test(env, args)
        env.close()
        return

    train(env, args, writer)

    writer.export_scalars_to_json(os.path.join(log_dir, "all_scalars.json"))
    writer.close()
    env.close()
Пример #2
0
def main():
    args = get_args()
    args.noisy = True
    args.double = True
    args.dueling = True
    args.prioritized_replay = True
    args.c51 = True
    args.multi_step = 3
    args.load_agents = True
    args.num_agents = 12
    args.read_model = None
    args.evaluate = False
    print_args(args)

    log_dir = create_log_dir(args)
    if not args.evaluate:
        writer = SummaryWriter(log_dir)

    env = PanicEnv(num_agents=args.num_agents,
                   scenario_=Scenario.Two_Exits,
                   load_agents=True,
                   read_agents=False)

    set_global_seeds(args.seed)

    if args.evaluate:
        test(env, args)
        return

    train(env, args, writer)

    writer.export_scalars_to_json(os.path.join(log_dir, "all_scalars.json"))
    writer.close()
Пример #3
0
def main():
    args = get_args()
    print_args(args)
    model_path = f'models/bilateral_dqn/{args.env}'
    os.makedirs(model_path, exist_ok=True)

    log_dir = create_log_dir(args)
    if not args.evaluate:
        writer = SummaryWriter(log_dir)
    SEED = 721
    if args.num_envs == 1 or args.evaluate:
        env = make_env(
            args)  # "SlimeVolley-v0", "SlimeVolleyPixel-v0" 'Pong-ram-v0'
    else:
        VectorEnv = [
            DummyVectorEnv, SubprocVectorEnv
        ][1]  # https://github.com/thu-ml/tianshou/blob/master/tianshou/env/venvs.py
        env = VectorEnv([lambda: make_env(args) for _ in range(args.num_envs)])
    print(env.observation_space, env.action_space)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    if args.evaluate:
        test(env, args, model_path)
        env.close()
        return

    train(env, args, writer, model_path)

    # writer.export_scalars_to_json(os.path.join(log_dir, "all_scalars.json"))
    writer.close()
    env.close()
Пример #4
0
Файл: main.py Проект: ai4ce/SNAC
def main():
    args = get_args()
    print_args(args)

    if args.evaluate:
        if args.env == "1DStatic":
            env = Env1DStatic(args)
        elif args.env == "1DDynamic":
            env = Env1DDynamic_Validation(args)
        elif args.env == "2DStatic":
            env = Env2DStatic(args)
        elif args.env == "2DDynamic":
            env = Env2DDynamic_Validation(args)
        elif args.env == "3DStatic":
            env = Env3DStatic(args)
        elif args.env == "3DDynamic":
            env = Env3DDynamic_Validation(args)
    else:
        if args.env == "1DStatic":
            env = Env1DStatic(args)
        elif args.env == "1DDynamic":
            env = Env1DDynamic(args)
        elif args.env == "2DStatic":
            env = Env2DStatic(args)
        elif args.env == "2DDynamic":
            env = Env2DDynamic(args)
        elif args.env == "3DStatic":
            env = Env3DStatic(args)
        elif args.env == "3DDynamic":
            env = Env3DDynamic(args)

        datetime = time.time()
        save_hyperparameters(args, datetime)
        log_dir = create_log_dir(args)
        writer = SummaryWriter(log_dir)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    if args.evaluate:
        validate(env, args)
    else:
        train(env, args, writer, datetime)
        writer.flush()
        writer.close()

    env.close()
Пример #5
0
def main():
    args = get_args()

    log_dir = create_log_dir(args)
    if not args.evaluate:
        writer = SummaryWriter(log_dir)

    env = make_atari(args.env)
    env = wrap_atari_dqn(env, args)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    if args.evaluate:
        test(env, args)
        env.close()
        return
    train(env, args, writer)

    writer.export_scalars_to_json(os.path.join(log_dir, "all_scalars.json"))
    writer.close()
    env.close()
Пример #6
0
def main():
    args = get_args()
    print_args(args)

    log_dir = create_log_dir(args)
    print("Log dir is:", log_dir)
    if not args.evaluate:
        writer = SummaryWriter(log_dir)

    env = gym.make(args.env)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    if args.evaluate:
        test(env, args)
        env.close()
        return

    train(env, args, writer)

    writer.export_scalars_to_json(os.path.join(log_dir, "all_scalars.json"))
    writer.close()
    env.close()
Пример #7
0
def main():
    args = get_args()
    print_args(args)

    log_dir = create_log_dir(args)
    wandb.init(project=args.wandb_project,
               name=args.wandb_name,
               notes=args.wandb_notes,
               config=args)

    env = make_atari(args.env)
    env = wrap_atari_dqn(env, args)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    if args.evaluate:
        test(env, args)
        env.close()
        return

    train(env, args)

    env.close()
def main():
    Exploiter = 'DQN'
    EvaluatedModel = 'NashDQN'

    args = get_args()
    # args.against_baseline=False
    print_args(args)

    env = make_env(
        args)  # "SlimeVolley-v0", "SlimeVolleyPixel-v0" 'Pong-ram-v0'
    print(env.observation_space, env.action_space)

    model_prefix = model_metadata[args.env]

    exploiter = load_exploiter(env, Exploiter, args)
    evaluated_model = load_evaluated_model(env, EvaluatedModel, args)

    model_dir = "models/nash_dqn/{}/{}/".format(args.env, model_prefix)
    exploiter_dir = "models/nash_dqn/{}/{}/exploiter/".format(
        args.env, model_prefix)
    os.makedirs(model_dir, exist_ok=True)
    os.makedirs(exploiter_dir, exist_ok=True)

    log_dir = create_log_dir(args)
    if not args.evaluate:
        writer = SummaryWriter(log_dir)

    set_global_seeds(args.seed)
    env.seed(args.seed)

    # Parse all models saved during training in order
    filelist, epi_list = [], []
    for filename in os.listdir(model_dir):
        if filename.endswith("dqn"):
            filelist.append(filename.split('_')[0] +
                            '_')  # remove '_dqn' at end
            epi_list.append(int(filename.split('_')[0]))
    sort_idx = np.argsort(epi_list).tolist()
    filelist = [x for _, x in sorted(zip(epi_list, filelist))
                ]  # sort filelist according to the sorting of epi_list
    epi_list.sort()  # filelist.sort() will not give correct answer
    print(epi_list)

    # Evaluate/exploit all models saved during training in order
    eval_data = {}
    for f, i in zip(filelist, epi_list):
        print('load model: ', i, model_dir, f)
        # if i>17000:
        evaluated_model.load_model(model_dir + f,
                                   eval=True,
                                   map_location='cuda:0')
        exploiter_path = exploiter_dir + f

        r, l = exploit(env,
                       evaluated_model,
                       exploiter,
                       args,
                       exploiter_path=exploiter_path)
        eval_data[str(i)] = [r, l]
    save_dir = 'data/{}/'.format(args.env)
    os.makedirs(save_dir, exist_ok=True)
    if args.fictitious:
        save_dir += '/fictitious_eval_data.npy'
    else:
        save_dir += '/eval_data.npy'
    np.save(save_dir, eval_data)

    writer.close()
    env.close()