Пример #1
0
def is_sensitive_topic_and_request(annotated_uttr):
    cobot_dialogact_topics = set(
        get_topics(annotated_uttr, which="cobot_dialogact_topics"))
    cobot_topics = set(get_topics(annotated_uttr, which="cobot_topics"))
    sensitive_topics_detected = any(
        [t in sensitive_topics for t in cobot_topics]) or any(
            [t in sensitive_dialogact_topics for t in cobot_dialogact_topics])

    all_intents = get_intents(annotated_uttr, probs=False, which="all")
    sensitive_dialogacts_detected = any(
        [t in sensitive_all_intents for t in all_intents])

    if sensitive_topics_detected and sensitive_dialogacts_detected:
        return True
    return False
Пример #2
0
def get_lets_chat_topic(lets_chat_about_flag, utt):
    lets_chat_topic = ""
    COBOT_DA_FILE_TOPICS_MATCH = {
        "Entertainment_Movies": "movies",
        "Entertainment_Music": "music",
        "Science_and_Technology": "science",
        "Sports": "sports",
        "Games": "games",
        "Movies_TV": "movies",
        "SciTech": "science",
        "Psychology": "emotions",
        "Music": "music",
        "Food_Drink": "food",
        "Weather_Time": "weather",
        "Entertainment": "activities",
        "Celebrities": "celebrities",
        "Travel_Geo": "travel",
        "Art_Event": "art",
    }
    if lets_chat_about_flag:
        _get_topics = get_topics(utt, which="all")
        for topic in _get_topics:
            if topic in COBOT_DA_FILE_TOPICS_MATCH:
                lets_chat_topic = COBOT_DA_FILE_TOPICS_MATCH[topic]
                if lets_chat_topic not in utt["text"]:
                    lets_chat_topic = ""
    return lets_chat_topic
Пример #3
0
def collect_topics_entities_intents(prev_human_utterance):
    if len(prev_human_utterance) > 1:
        intent_list = get_intents(prev_human_utterance,
                                  which="cobot_dialogact_intents")
        da_topic_list = get_topics(prev_human_utterance,
                                   which="cobot_dialogact_topics")
        cobot_topic_list = get_topics(prev_human_utterance,
                                      which="cobot_topics")

        intent_list = list(set(intent_list))
        da_topic_list = list(set(da_topic_list))
        cobot_topic_list = list(set(cobot_topic_list))
    else:
        intent_list, da_topic_list, cobot_topic_list = [], [], []

    return intent_list, da_topic_list, cobot_topic_list
Пример #4
0
def book_movie_music_found(annotated_uttr):
    cobot_dialogacts = set(
        get_topics(annotated_uttr, which="cobot_dialogact_topics"))
    named_cobot_dialogacts = {
        "Entertainment_Books", "Entertainment_Movies", "Entertainment_Music"
    }
    dialogact_met = len(named_cobot_dialogacts & cobot_dialogacts) > 0
    return dialogact_met
Пример #5
0
def get_main_info_annotations(annotated_utterance):
    intents = get_intents(annotated_utterance, which="all")
    topics = get_topics(annotated_utterance, which="all")
    named_entities = get_entities(annotated_utterance,
                                  only_named=True,
                                  with_labels=False)
    nounphrases = get_entities(annotated_utterance,
                               only_named=False,
                               with_labels=False)
    return intents, topics, named_entities, nounphrases
Пример #6
0
def thematic_funfact_response(ctx: Context, actor: Actor, *args, **kwargs) -> str:
    response = ""
    set_confidence(ctx, actor, CONF_HIGH)
    set_can_continue(ctx, actor, MUST_CONTINUE)
    entity = ctx.last_request.split("about")
    if len(entity) > 1:
        entity = entity[1]
        human_utter = get_last_human_utterance(ctx, actor)
        topic = get_topics(human_utter, which="cobot_topics")[0]
        funfact = get_fact(entity, f"fact about {entity}")
        if funfact:
            link_question = make_question(topic)
            response = f"{funfact} {link_question}"
    if not response:
        set_confidence(ctx, actor, CONF_ZERO)
    return response
Пример #7
0
    async def send(self, payload: Dict, callback: Callable):
        st_time = time.time()
        try:
            dialog = payload["payload"]["states_batch"][0]

            skills_for_uttr = []
            user_uttr = dialog["human_utterances"][-1]
            user_uttr_text = user_uttr["text"].lower()
            user_uttr_annotations = user_uttr["annotations"]
            bot_uttr = dialog["bot_utterances"][-1] if len(
                dialog["bot_utterances"]) else {}
            bot_uttr_text_lower = bot_uttr.get("text", "").lower()
            prev_active_skill = bot_uttr.get("active_skill", "")

            intent_catcher_intents = get_intents(user_uttr,
                                                 probs=False,
                                                 which="intent_catcher")
            high_priority_intent_detected = any([
                k for k in intent_catcher_intents
                if k in high_priority_intents["dff_intent_responder_skill"]
            ])
            low_priority_intent_detected = any([
                k for k in intent_catcher_intents if k in low_priority_intents
            ])

            detected_topics = set(get_topics(user_uttr, which="all"))

            is_factoid = get_factoid(user_uttr).get("is_factoid", 0.0) > 0.96
            is_celebrity_mentioned = check_is_celebrity_mentioned(user_uttr)

            if_choose_topic_detected = if_choose_topic(user_uttr, bot_uttr)
            if_lets_chat_about_particular_topic_detected = if_chat_about_particular_topic(
                user_uttr, bot_uttr)

            dialog_len = len(dialog["human_utterances"])

            exit_cond = "exit" in intent_catcher_intents and (
                dialog_len == 1 or
                (dialog_len == 2 and len(user_uttr_text.split()) > 3))
            repeat_cond = ("repeat" in intent_catcher_intents
                           and prev_active_skill in UNPREDICTABLE_SKILLS
                           and re.match(r"^what.?$", user_uttr_text))
            cant_do_cond = ("cant_do" in intent_catcher_intents
                            and "play" in user_uttr_text and any([
                                phrase in bot_uttr_text_lower
                                for phrase in GREETING_QUESTIONS_TEXTS
                            ]))
            for intent_name, condition in zip(
                ["exit", "repeat", "cant_do"],
                [exit_cond, repeat_cond, cant_do_cond]):
                if condition:
                    high_priority_intent_detected = False
                    not_detected = {"detected": 0, "confidence": 0.0}
                    user_uttr["annotations"]["intent_catcher"][
                        intent_name] = not_detected
                    dialog["utterances"][-1]["annotations"]["intent_catcher"][
                        intent_name] = not_detected

            if "/new_persona" in user_uttr_text:
                # process /new_persona command
                skills_for_uttr.append(
                    "personality_catcher"
                )  # TODO: rm crutch of personality_catcher
            elif user_uttr_text == "/get_dialog_id":
                skills_for_uttr.append("dummy_skill")
            elif high_priority_intent_detected:
                # process intent with corresponding IntentResponder
                skills_for_uttr.append("dff_intent_responder_skill")
            elif is_sensitive_topic_and_request(user_uttr):
                # process user utterance with sensitive content, "safe mode"

                # adding open-domain skills without opinion expression
                skills_for_uttr.append("dff_program_y_dangerous_skill")
                skills_for_uttr.append("meta_script_skill")
                skills_for_uttr.append("personal_info_skill")
                skills_for_uttr.append("factoid_qa")
                skills_for_uttr.append("dff_grounding_skill")
                skills_for_uttr.append("dummy_skill")
                skills_for_uttr.append("small_talk_skill")

                if if_lets_chat_about_particular_topic_detected:
                    skills_for_uttr.append("news_api_skill")
                if if_special_weather_turn_on(user_uttr, bot_uttr):
                    skills_for_uttr.append("dff_weather_skill")
                if is_celebrity_mentioned:
                    skills_for_uttr.append("dff_gossip_skill")

                # adding closed-domain skills
                skills_for_uttr += turn_on_skills(
                    detected_topics,
                    intent_catcher_intents,
                    user_uttr_text,
                    bot_uttr.get("text", ""),
                    available_skills=[
                        "news_api_skill",
                        "dff_coronavirus_skill",
                        "dff_funfact_skill",
                        "dff_weather_skill",
                        "dff_short_story_skill",
                    ],
                )
                # adding linked-to skills
                skills_for_uttr.extend(get_linked_to_skills(dialog))
                skills_for_uttr.extend(get_previously_active_skill(dialog))
            else:
                # general case
                if low_priority_intent_detected:
                    skills_for_uttr.append("dff_intent_responder_skill")
                # adding open-domain skills
                skills_for_uttr.append("dff_grounding_skill")
                skills_for_uttr.append("dff_program_y_skill")
                skills_for_uttr.append("personal_info_skill")
                skills_for_uttr.append("meta_script_skill")
                skills_for_uttr.append("dummy_skill")
                skills_for_uttr.append("dialogpt")  # generative skill
                skills_for_uttr.append("small_talk_skill")
                skills_for_uttr.append("knowledge_grounding_skill")
                skills_for_uttr.append("convert_reddit")
                skills_for_uttr.append("comet_dialog_skill")
                skills_for_uttr.append("dff_program_y_wide_skill")

                # adding friendship only in the beginning of the dialog
                if len(dialog["utterances"]) < 20:
                    skills_for_uttr.append("dff_friendship_skill")

                if if_choose_topic_detected or if_lets_chat_about_particular_topic_detected:
                    skills_for_uttr.append("knowledge_grounding_skill")
                    skills_for_uttr.append("news_api_skill")

                switch_wiki_skill, _ = if_switch_wiki_skill(
                    user_uttr, bot_uttr)
                if switch_wiki_skill or switch_wiki_skill_on_news(
                        user_uttr, bot_uttr):
                    skills_for_uttr.append("dff_wiki_skill")
                if if_switch_test_skill(user_uttr, bot_uttr):
                    skills_for_uttr.append("dff_art_skill")

                # adding factoidQA Skill if user utterance is factoid question
                if is_factoid:
                    skills_for_uttr.append("factoid_qa")

                if "dummy_skill" in prev_active_skill and len(
                        dialog["utterances"]) > 4:
                    skills_for_uttr.append("dummy_skill_dialog")

                # if user mentions
                if is_celebrity_mentioned:
                    skills_for_uttr.append("dff_gossip_skill")
                # some special cases
                if if_special_weather_turn_on(user_uttr, bot_uttr):
                    skills_for_uttr.append("dff_weather_skill")
                if if_turn_on_emotion(user_uttr, bot_uttr):
                    skills_for_uttr.append("emotion_skill")
                if get_named_locations(user_uttr):
                    skills_for_uttr.append("dff_travel_skill")
                if extract_movies_names_from_annotations(user_uttr):
                    skills_for_uttr.append("dff_movie_skill")

                # adding closed-domain skills
                skills_for_uttr += turn_on_skills(
                    detected_topics,
                    intent_catcher_intents,
                    user_uttr_text,
                    bot_uttr.get("text", ""),
                    available_skills=[
                        "dff_art_skill",
                        "dff_movie_skill",
                        "dff_book_skill",
                        "news_api_skill",
                        "dff_food_skill",
                        "dff_animals_skill",
                        "dff_sport_skill",
                        "dff_music_skill",
                        "dff_science_skill",
                        "dff_gossip_skill",
                        "game_cooperative_skill",
                        "dff_weather_skill",
                        "dff_funfact_skill",
                        "dff_travel_skill",
                        "dff_coronavirus_skill",
                        "dff_bot_persona_skill",
                        "dff_gaming_skill",
                        "dff_short_story_skill",
                    ],
                )
                # adding linked-to skills
                skills_for_uttr.extend(get_linked_to_skills(dialog))
                skills_for_uttr.extend(get_previously_active_skill(dialog))

            # NOW IT IS NOT ONLY FOR USUAL CONVERSATION BUT ALSO FOR SENSITIVE/HIGH PRIORITY INTENTS/ETC

            if "dff_coronavirus_skill" in skills_for_uttr:
                #  no convert & comet when about coronavirus
                if "convert_reddit" in skills_for_uttr:
                    skills_for_uttr.remove("convert_reddit")
                if "comet_dialog_skill" in skills_for_uttr:
                    skills_for_uttr.remove("comet_dialog_skill")

            if len(dialog["utterances"]) > 1:
                # Use only misheard asr skill if asr is not confident and skip it for greeting
                if user_uttr_annotations.get("asr",
                                             {}).get("asr_confidence",
                                                     "high") == "very_low":
                    skills_for_uttr = ["misheard_asr"]

            if "/alexa_" in user_uttr_text:
                # adding alexa handler for Amazon Alexa specific commands
                skills_for_uttr = ["alexa_handler"]

            logger.info(f"Selected skills: {skills_for_uttr}")

            total_time = time.time() - st_time
            logger.info(f"rule_based_selector exec time = {total_time:.3f}s")
            asyncio.create_task(
                callback(task_id=payload["task_id"],
                         response=list(set(skills_for_uttr))))
        except Exception as e:
            total_time = time.time() - st_time
            logger.info(f"rule_based_selector exec time = {total_time:.3f}s")
            logger.exception(e)
            sentry_sdk.capture_exception(e)
            asyncio.create_task(
                callback(task_id=payload["task_id"],
                         response=["dff_program_y_skill", "dummy_skill"]))
Пример #8
0
def about_book(annotated_utterance):
    y1 = "Entertainment_Books" in get_topics(annotated_utterance, which="cobot_dialogact_topics")
    y2 = re.search(BOOK_PATTERN, annotated_utterance["text"])
    return y1 or y2
Пример #9
0
def respond():
    st_time = time()
    dialogs = request.json["dialogs"]
    responses = []
    confidences = []
    human_attributes = []
    bot_attributes = []
    attributes = []

    topics, statuses, curr_news_samples = collect_topics_and_statuses(dialogs)
    topics = [remove_punct_and_articles(topic) for topic in topics]
    topics = np.array(topics)
    statuses = np.array(statuses)
    curr_news_samples = np.array(curr_news_samples)

    for dialog, curr_topic, curr_status, result in zip(dialogs, topics,
                                                       statuses,
                                                       curr_news_samples):
        logger.info(
            f"Composing answer for topic: {curr_topic} and status: {curr_status}."
        )
        logger.info(f"Result: {result}.")

        human_attr = {}
        human_attr["used_links"] = dialog["human"]["attributes"].get(
            "used_links", defaultdict(list))
        human_attr["disliked_skills"] = dialog["human"]["attributes"].get(
            "disliked_skills", [])
        human_attr["news_api_skill"] = dialog["human"]["attributes"].get(
            "news_api_skill", {})
        human_attr["news_api_skill"]["discussed_news"] = human_attr[
            "news_api_skill"].get("discussed_news", [])
        bot_attr = {}
        # the only difference is that result is already is a dictionary with news.

        lets_chat_about_particular_topic = if_chat_about_particular_topic(
            dialog["human_utterances"][-1], dialog["bot_utterances"][-1]
            if len(dialog["bot_utterances"]) else {})
        curr_uttr = dialog["human_utterances"][-1]
        about_news = ({"News"} & set(
            get_topics(curr_uttr, which="cobot_topics"))) or re.search(
                NEWS_TEMPLATES, curr_uttr["text"].lower())
        about_news = about_news and not re.search(FALSE_NEWS_TEMPLATES,
                                                  curr_uttr["text"].lower())
        prev_bot_uttr_lower = dialog["bot_utterances"][-1]["text"].lower(
        ) if len(dialog["bot_utterances"]) > 0 else ""

        if lets_chat_about_particular_topic:
            prev_news_skill_output = get_skill_outputs_from_dialog(
                dialog["utterances"][-3:],
                skill_name="news_api_skill",
                activated=True)
            if result and len(prev_news_skill_output) == 0:
                # it was a lets chat about topic and we found appropriate news
                if curr_topic == "all":
                    if about_news:
                        response = OFFER_BREAKING_NEWS
                        confidence = DEFAULT_NEWS_OFFER_CONFIDENCE  # 1.0
                        attr = {
                            "news_status": OFFERED_BREAKING_NEWS_STATUS,
                            "news_topic": "all",
                            "can_continue": CAN_CONTINUE_PROMPT,
                            "curr_news": result,
                        }
                        if attr["curr_news"]["url"] not in human_attr[
                                "news_api_skill"]["discussed_news"]:
                            human_attr["news_api_skill"]["discussed_news"] += [
                                attr["curr_news"]["url"]
                            ]
                    else:
                        response = ""
                        confidence = 0.0
                        attr = {}
                else:
                    response = SAY_TOPIC_SPECIFIC_NEWS.replace(
                        "TOPIC", curr_topic)
                    response = f"{response} {result['title']}.. {OFFER_MORE}"
                    confidence = LINKTO_CONFIDENCE
                    attr = {
                        "news_status": OFFERED_NEWS_DETAILS_STATUS,
                        "news_topic": curr_topic,
                        "curr_news": result,
                        "can_continue": CAN_CONTINUE_PROMPT,
                    }
                    if attr["curr_news"]["url"] not in human_attr[
                            "news_api_skill"]["discussed_news"]:
                        human_attr["news_api_skill"]["discussed_news"] += [
                            attr["curr_news"]["url"]
                        ]
                responses.append(response)
                confidences.append(confidence)
                human_attributes.append(human_attr)
                bot_attributes.append(bot_attr)
                attributes.append(attr)
                continue
            else:
                responses.append("")
                confidences.append(0.0)
                human_attributes.append(human_attr)
                bot_attributes.append(bot_attr)
                attributes.append({})
                continue

        if result:
            logger.info("Topic: {}".format(curr_topic))
            logger.info("News found: {}".format(result))
            if curr_status == "headline":
                if len(dialog["human_utterances"]) > 0:
                    curr_uttr = dialog["human_utterances"][-1]
                else:
                    curr_uttr = {"text": ""}

                if OFFER_BREAKING_NEWS.lower(
                ) in prev_bot_uttr_lower and is_yes(curr_uttr):
                    response = f"Here it is: {result['title']}.. {OFFER_MORE}"
                    confidence = DEFAULT_NEWS_OFFER_CONFIDENCE
                    attr = {
                        "news_status": OFFERED_NEWS_DETAILS_STATUS,
                        "news_topic": curr_topic,
                        "curr_news": result,
                        "can_continue": MUST_CONTINUE,
                    }
                    if attr["curr_news"]["url"] not in human_attr[
                            "news_api_skill"]["discussed_news"]:
                        human_attr["news_api_skill"]["discussed_news"] += [
                            attr["curr_news"]["url"]
                        ]
                elif curr_topic == "all":
                    prev_news_skill_output = get_skill_outputs_from_dialog(
                        dialog["utterances"][-3:],
                        skill_name="news_api_skill",
                        activated=True)
                    if (len(prev_news_skill_output) > 0
                            and prev_news_skill_output[-1].get(
                                "news_status",
                                "") == OFFERED_NEWS_TOPIC_CATEGORIES_STATUS):
                        # topic was not detected
                        response = ""
                        confidence = 0.0
                        attr = {}
                    else:
                        response = f"Here is one of the latest news that I found: {result['title']}.. {OFFER_MORE}"
                        confidence = DEFAULT_NEWS_OFFER_CONFIDENCE
                        attr = {
                            "news_status": OFFERED_NEWS_DETAILS_STATUS,
                            "news_topic": curr_topic,
                            "curr_news": result,
                            "can_continue": MUST_CONTINUE,
                        }
                        if attr["curr_news"]["url"] not in human_attr[
                                "news_api_skill"]["discussed_news"]:
                            human_attr["news_api_skill"]["discussed_news"] += [
                                attr["curr_news"]["url"]
                            ]
                else:
                    response = (
                        f"Here is one of the latest news on topic {curr_topic}: "
                        f"{result['title']}.. {OFFER_MORE}")
                    confidence = DEFAULT_NEWS_OFFER_CONFIDENCE
                    attr = {
                        "news_status": OFFERED_NEWS_DETAILS_STATUS,
                        "news_topic": curr_topic,
                        "curr_news": result,
                        "can_continue": MUST_CONTINUE,
                    }
                    if attr["curr_news"]["url"] not in human_attr[
                            "news_api_skill"]["discussed_news"]:
                        human_attr["news_api_skill"]["discussed_news"] += [
                            attr["curr_news"]["url"]
                        ]
            elif curr_status == "details":
                response = f"In details: {result['description']}. {ASK_OPINION}"
                confidence = DEFAULT_NEWS_DETAILS_CONFIDENCE
                attr = {
                    "news_status": OPINION_REQUEST_STATUS,
                    "news_topic": curr_topic,
                    "curr_news": result,
                    "can_continue": MUST_CONTINUE,
                }
                if attr["curr_news"]["url"] not in human_attr[
                        "news_api_skill"]["discussed_news"]:
                    human_attr["news_api_skill"]["discussed_news"] += [
                        attr["curr_news"]["url"]
                    ]
            elif curr_status == "declined":
                # user declined to get latest news, topical news, or we did not find news request
                response, confidence, human_attr, bot_attr, attr = "", 0.0, {}, {}, {}
            else:
                prev_news_skill_output = get_skill_outputs_from_dialog(
                    dialog["utterances"][-3:],
                    skill_name="news_api_skill",
                    activated=True)
                curr_uttr = dialog["human_utterances"][-1]
                # status finished is here
                if len(prev_news_skill_output
                       ) > 0 and prev_news_skill_output[-1].get(
                           "news_status", "") not in [
                               OFFERED_NEWS_DETAILS_STATUS,
                               OFFERED_NEWS_TOPIC_CATEGORIES_STATUS,
                           ]:
                    result = prev_news_skill_output[-1].get("curr_news", {})
                    # try to offer more news
                    topics_list = NEWS_TOPICS[:]
                    random.shuffle(topics_list)
                    offered_topics = []
                    for topic in topics_list:
                        curr_topic_result = get_news_for_current_entity(
                            topic, curr_uttr,
                            human_attr["news_api_skill"]["discussed_news"])
                        if len(curr_topic_result) > 0:
                            offered_topics.append(topic)
                            logger.info("Topic: {}".format(topic))
                            logger.info("Result: {}".format(curr_topic_result))
                        if len(offered_topics) == 2:
                            break
                    if len(offered_topics) == 2:
                        # two topics with result news were found
                        response = (
                            f"{random.choice(WHAT_TYPE_OF_NEWS)} "
                            f"{offered_topics[0]} or {offered_topics[1].lower()}?"
                        )
                        confidence = WHAT_TYPE_OF_NEWS_CONFIDENCE
                        attr = {
                            "news_status":
                            OFFERED_NEWS_TOPIC_CATEGORIES_STATUS,
                            "can_continue": CAN_CONTINUE_PROMPT,
                            "news_topic": " ".join(offered_topics),
                            "curr_news": result,
                        }
                        if attr["curr_news"]["url"] not in human_attr[
                                "news_api_skill"]["discussed_news"]:
                            human_attr["news_api_skill"]["discussed_news"] += [
                                attr["curr_news"]["url"]
                            ]
                    else:
                        # can't find enough topics for the user to offer
                        response, confidence, human_attr, bot_attr, attr = link_to_other_skills(
                            human_attr, bot_attr, curr_uttr)
                else:
                    # news was offered previously but the user refuse to get it
                    # or false news request was detected
                    response, confidence, human_attr, bot_attr, attr = "", 0.0, {}, {}, {}

        else:
            # no found news
            logger.info("No particular news found.")
            new_result = get_news_for_current_entity(
                "all", curr_uttr,
                human_attr["news_api_skill"]["discussed_news"])
            if curr_topic != "all" and len(new_result.get("title", "")) > 0:
                logger.info("Offer latest news.")
                response = f"Sorry, I could not find some specific news. {OFFER_BREAKING_NEWS}"
                confidence = NOT_SPECIFIC_NEWS_OFFER_CONFIDENCE
                attr = {
                    "news_status": OFFERED_BREAKING_NEWS_STATUS,
                    "news_topic": "all",
                    "can_continue": MUST_CONTINUE,
                    "curr_news": new_result,
                }
                if attr["curr_news"]["url"] not in human_attr[
                        "news_api_skill"]["discussed_news"]:
                    human_attr["news_api_skill"]["discussed_news"] += [
                        attr["curr_news"]["url"]
                    ]
            elif OFFER_BREAKING_NEWS.lower() in prev_bot_uttr_lower and is_yes(
                    curr_uttr):
                logger.info("No latest news found.")
                response = (
                    "Sorry, seems like all the news slipped my mind. Let's chat about something else. "
                    "What do you want to talk about?")
                confidence = NOT_SPECIFIC_NEWS_OFFER_CONFIDENCE
                attr = {
                    "news_status": OFFERED_BREAKING_NEWS_STATUS,
                    "can_continue": MUST_CONTINUE
                }
            else:
                response, confidence, human_attr, bot_attr, attr = "", 0.0, {}, {}, {}

        responses.append(response)
        confidences.append(confidence)
        human_attributes.append(human_attr)
        bot_attributes.append(bot_attr)
        attributes.append(attr)

    total_time = time() - st_time
    logger.info(f"news_api_skill exec time: {total_time:.3f}s")
    return jsonify(
        list(
            zip(responses, confidences, human_attributes, bot_attributes,
                attributes)))
Пример #10
0
def collect_topics_and_statuses(dialogs):
    topics = []
    statuses = []
    curr_news_samples = []
    for dialog in dialogs:
        curr_uttr = dialog["human_utterances"][-1]
        prev_uttr = dialog["bot_utterances"][-1] if len(
            dialog["bot_utterances"]) else {}
        human_attr = {}
        human_attr["news_api_skill"] = dialog["human"]["attributes"].get(
            "news_api_skill", {})
        discussed_news = human_attr["news_api_skill"].get("discussed_news", [])
        prev_bot_uttr = dialog["bot_utterances"][-1] if len(
            dialog["bot_utterances"]) > 0 else {}
        prev_bot_uttr_lower = prev_bot_uttr.get("text", "").lower()

        prev_news_skill_output = get_skill_outputs_from_dialog(
            dialog["utterances"][-3:],
            skill_name="news_api_skill",
            activated=True)

        if len(prev_news_skill_output) > 0 and len(
                prev_news_skill_output[-1]) > 0:
            logger.info(f"News skill was prev active.")
            prev_news_skill_output = prev_news_skill_output[-1]
            prev_status = prev_news_skill_output.get("news_status", "")
            prev_topic = prev_news_skill_output.get("news_topic", "all")
            last_news = prev_news_skill_output.get("curr_news", {})
            if prev_status == OFFERED_NEWS_DETAILS_STATUS:
                topics.append(prev_topic)
                if is_yes(curr_uttr):
                    logger.info(f"Detected topic for news: {prev_topic}")
                    statuses.append("details")
                else:
                    logger.info("User refused to get news details")
                    statuses.append("finished")
                curr_news_samples.append(last_news)
            elif prev_status == OFFERED_BREAKING_NEWS_STATUS or OFFER_BREAKING_NEWS.lower(
            ) in prev_bot_uttr_lower:
                topics.append("all")
                if is_yes(curr_uttr):
                    logger.info("Detected topic for news: all.")
                    statuses.append("headline")
                else:
                    logger.info("User refuse to get latest news")
                    statuses.append("declined")
                curr_news_samples.append(last_news)
            elif re.search(TELL_MORE_NEWS_TEMPLATES,
                           curr_uttr["text"].lower()):
                prev_news_skill_output = get_skill_outputs_from_dialog(
                    dialog["utterances"][-7:],
                    skill_name="news_api_skill",
                    activated=True)
                for prev_news_out in prev_news_skill_output:
                    if prev_news_out.get("curr_news", {}) != {}:
                        last_news = prev_news_out.get("curr_news", {})
                logger.info(
                    f"User requested more news. Prev news was: {last_news}")
                topics.append(prev_topic)
                statuses.append("headline")
                curr_news_samples.append(
                    get_news_for_current_entity(prev_topic, curr_uttr,
                                                discussed_news))
            elif prev_status == OFFERED_NEWS_TOPIC_CATEGORIES_STATUS:
                if not (news_rejection(curr_uttr["text"].lower())
                        or is_no(curr_uttr)):
                    logger.info("User chose the topic for news")
                    if ANY_TOPIC_PATTERN.search(curr_uttr["text"]):
                        topics.append(prev_topic.split()[0])
                        curr_news_samples.append(
                            get_news_for_current_entity(
                                prev_topic.split()[0], curr_uttr,
                                discussed_news))
                    elif SECOND_TOPIC_PATTERN.search(curr_uttr["text"]):
                        topics.append(prev_topic.split()[1])
                        curr_news_samples.append(
                            get_news_for_current_entity(
                                prev_topic.split()[1], curr_uttr,
                                discussed_news))
                    else:
                        entities = extract_topics(curr_uttr)
                        if len(entities) != 0:
                            topics.append(entities[-1])
                            curr_news_samples.append(
                                get_news_for_current_entity(
                                    entities[-1], curr_uttr, discussed_news))
                        else:
                            topics.append("all")
                            curr_news_samples.append(
                                get_news_for_current_entity(
                                    "all", curr_uttr, discussed_news))
                    logger.info(f"Chosen topic: {topics}")
                    statuses.append("headline")
                else:
                    logger.info("User doesn't want to get any news")
                    topics.append("all")
                    statuses.append("declined")
                    curr_news_samples.append({})
            elif prev_status == OFFER_TOPIC_SPECIFIC_NEWS_STATUS:
                topics.append(prev_topic)
                if is_yes(curr_uttr):
                    logger.info(
                        f"User wants to listen news about {prev_topic}.")
                    statuses.append("headline")
                else:
                    logger.info(
                        f"User doesn't want to listen news about {prev_topic}."
                    )
                    statuses.append("declined")
                curr_news_samples.append(last_news)
            else:
                logger.info(
                    "News skill was active and now can offer more news.")
                topics.append("all")
                statuses.append("finished")
                curr_news_samples.append(
                    get_news_for_current_entity("all", curr_uttr,
                                                discussed_news))
        else:
            logger.info(f"News skill was NOT active.")
            about_news = (
                ({"News"} & set(get_topics(curr_uttr, which="cobot_topics")))
                or re.search(NEWS_TEMPLATES, curr_uttr["text"].lower())
            ) and not re.search(FALSE_NEWS_TEMPLATES,
                                curr_uttr["text"].lower())
            lets_chat_about_particular_topic = if_chat_about_particular_topic(
                curr_uttr, prev_uttr)
            lets_chat_about_news = if_chat_about_particular_topic(
                curr_uttr, prev_uttr, compiled_pattern=NEWS_TEMPLATES)
            _was_offer_news = was_offer_news_about_topic(prev_bot_uttr_lower)
            _offered_by_bot_entities = EXTRACT_OFFERED_NEWS_TOPIC_TEMPLATE.findall(
                prev_bot_uttr_lower)

            if about_news:
                # the request contains something about news
                entities = extract_topics(curr_uttr)
                logger.info(f"News request on entities: `{entities}`")
                if re.search(TELL_MORE_NEWS_TEMPLATES,
                             curr_uttr["text"].lower()):
                    # user requestd more news.
                    # look for the last 3 turns and find last discussed news sample
                    logger.info("Tell me more news request.")
                    prev_news_skill_output = get_skill_outputs_from_dialog(
                        dialog["utterances"][-7:],
                        skill_name="news_api_skill",
                        activated=True)
                    if len(prev_news_skill_output) > 0 and len(
                            prev_news_skill_output[-1]) > 0:
                        prev_news_skill_output = prev_news_skill_output[-1]
                        prev_topic = prev_news_skill_output.get(
                            "news_topic", "all")
                    else:
                        prev_topic = "all"
                    logger.info(
                        "News skill was NOT prev active. User requested more news."
                    )
                    topics.append(prev_topic)
                    statuses.append("headline")
                    curr_news_samples.append(
                        get_news_for_current_entity(prev_topic, curr_uttr,
                                                    discussed_news))
                elif len(entities) == 0:
                    # no entities or nounphrases -> no special news request, get all news
                    logger.info("News request, no entities and nounphrases.")
                    topics.append("all")
                    statuses.append("headline")
                    curr_news_samples.append(
                        get_news_for_current_entity("all", curr_uttr,
                                                    discussed_news))
                else:
                    # found entities or nounphrases -> special news request,
                    # get the last mentioned entity
                    # if no named entities, get the last mentioned nounphrase
                    logger.info(f"Detected topic for news: {entities[-1]}")
                    topics.append(entities[-1])
                    statuses.append("headline")
                    curr_news_samples.append(
                        get_news_for_current_entity(entities[-1], curr_uttr,
                                                    discussed_news))
            elif OFFER_BREAKING_NEWS.lower() in prev_bot_uttr_lower:
                # news skill was not previously active
                topics.append("all")
                if is_yes(curr_uttr) or lets_chat_about_news:
                    logger.info("Detected topic for news: all.")
                    statuses.append("headline")
                else:
                    logger.info(
                        "Detected topic for news: all. Refused to get latest news"
                    )
                    statuses.append("declined")
                curr_news_samples.append(
                    get_news_for_current_entity("all", curr_uttr,
                                                discussed_news))
            elif _was_offer_news and _offered_by_bot_entities:
                topics.append(_offered_by_bot_entities[-1])
                if is_yes(curr_uttr):
                    logger.info(
                        f"Bot offered news on entities: `{_offered_by_bot_entities}`"
                    )
                    statuses.append("headline")
                else:
                    logger.info(
                        f"Bot offered news on entities: `{_offered_by_bot_entities}`. User refused."
                    )
                    statuses.append("declined")
                curr_news_samples.append(
                    get_news_for_current_entity(_offered_by_bot_entities[-1],
                                                curr_uttr, discussed_news))
            elif lets_chat_about_particular_topic:
                # the request contains something about news
                entities = extract_topics(curr_uttr)
                logger.info(f"News request on entities: `{entities}`")
                if len(entities) == 0:
                    # no entities or nounphrases & lets_chat_about_particular_topic
                    logger.info(
                        "No news request, no entities and nounphrases, but lets chat."
                    )
                    topics.append("all")
                    statuses.append("declined")
                    curr_news_samples.append({})
                else:
                    # found entities or nounphrases -> special news request,
                    # get the last mentioned entity
                    # if no named entities, get the last mentioned nounphrase
                    logger.info(f"Detected topic for news: {entities[-1]}")
                    topics.append(entities[-1])
                    statuses.append("headline")
                    curr_news_samples.append(
                        get_news_for_current_entity(entities[-1], curr_uttr,
                                                    discussed_news))
            else:
                logger.info("Didn't detected news request.")
                topics.append("all")
                statuses.append("declined")
                curr_news_samples.append({})
    return topics, statuses, curr_news_samples
Пример #11
0
    async def send(self, payload: Dict, callback: Callable):
        try:
            st_time = time.time()
            dialog = deepcopy(payload["payload"]["dialogs"][0])
            is_sensitive_case = is_sensitive_situation(dialog["human_utterances"][-1])
            all_prev_active_skills = payload["payload"]["all_prev_active_skills"][0]

            curr_topics = get_topics(dialog["human_utterances"][-1], which="cobot_topics")
            curr_nounphrases = get_entities(dialog["human_utterances"][-1], only_named=False, with_labels=False)

            if len(curr_topics) == 0:
                curr_topics = ["Phatic"]
            logger.info(f"Found topics: {curr_topics}")
            for i in range(len(curr_nounphrases)):
                np = re.sub(np_remove_expr, "", curr_nounphrases[i])
                np = re.sub(rm_spaces_expr, " ", np)
                if re.search(np_ignore_expr, np):
                    curr_nounphrases[i] = ""
                else:
                    curr_nounphrases[i] = np.strip()

            curr_nounphrases = [np for np in curr_nounphrases if len(np) > 0]

            logger.info(f"Found nounphrases: {curr_nounphrases}")

            cands = []
            confs = []
            human_attrs = []
            bot_attrs = []
            attrs = []

            cands += [choice(donotknow_answers)]
            confs += [0.5]
            attrs += [{"type": "dummy"}]
            human_attrs += [{}]
            bot_attrs += [{}]

            if len(dialog["utterances"]) > 14 and not is_sensitive_case:
                questions_same_nps = []
                for i, nphrase in enumerate(curr_nounphrases):
                    for q_id in NP_QUESTIONS.get(nphrase, []):
                        questions_same_nps += [QUESTIONS_MAP[str(q_id)]]

                if len(questions_same_nps) > 0:
                    logger.info("Found special nounphrases for questions. Return question with the same nounphrase.")
                    cands += [choice(questions_same_nps)]
                    confs += [0.5]
                    attrs += [{"type": "nounphrase_question"}]
                    human_attrs += [{}]
                    bot_attrs += [{}]

            link_to_question, human_attr = get_link_to_question(dialog, all_prev_active_skills)
            if link_to_question:
                _prev_bot_uttr = dialog["bot_utterances"][-2]["text"] if len(dialog["bot_utterances"]) > 1 else ""
                _bot_uttr = dialog["bot_utterances"][-1]["text"] if len(dialog["bot_utterances"]) > 0 else ""
                _prev_active_skill = (
                    dialog["bot_utterances"][-1]["active_skill"] if len(dialog["bot_utterances"]) > 0 else ""
                )

                _no_to_first_linkto = any([phrase in _bot_uttr for phrase in LINK_TO_PHRASES])
                _no_to_first_linkto = _no_to_first_linkto and all(
                    [phrase not in _prev_bot_uttr for phrase in LINK_TO_PHRASES]
                )
                _no_to_first_linkto = _no_to_first_linkto and is_no(dialog["human_utterances"][-1])
                _no_to_first_linkto = _no_to_first_linkto and _prev_active_skill != "dff_friendship_skill"

                _if_switch_topic = is_switch_topic(dialog["human_utterances"][-1])
                bot_uttr_dict = dialog["bot_utterances"][-1] if len(dialog["bot_utterances"]) > 0 else {}
                _if_choose_topic = if_choose_topic(dialog["human_utterances"][-1], bot_uttr_dict)
                _is_ask_me_something = ASK_ME_QUESTION_PATTERN.search(dialog["human_utterances"][-1]["text"])

                if len(dialog["human_utterances"]) > 1:
                    _was_cant_do = "cant_do" in get_intents(dialog["human_utterances"][-2]) and (
                        len(curr_nounphrases) == 0 or is_yes(dialog["human_utterances"][-1])
                    )
                    _was_cant_do_stop_it = "cant_do" in get_intents(dialog["human_utterances"][-2]) and is_no(
                        dialog["human_utterances"][-1]
                    )
                else:
                    _was_cant_do = False
                    _was_cant_do_stop_it = False

                if _was_cant_do_stop_it:
                    link_to_question = "Sorry, bye! #+#exit"
                    confs += [1.0]  # finish dialog request
                elif _no_to_first_linkto:
                    confs += [0.99]
                elif _is_ask_me_something or _if_switch_topic or _was_cant_do or _if_choose_topic:
                    confs += [1.0]  # Use it only as response selector retrieve skill output modifier
                else:
                    confs += [0.05]  # Use it only as response selector retrieve skill output modifier
                cands += [link_to_question]
                attrs += [{"type": "link_to_for_response_selector"}]
                human_attrs += [human_attr]
                bot_attrs += [{}]

            facts_same_nps = []
            for i, nphrase in enumerate(curr_nounphrases):
                for fact_id in NP_FACTS.get(nphrase, []):
                    facts_same_nps += [
                        f"Well, now that you've mentioned {nphrase}, I've remembered this. {FACTS_MAP[str(fact_id)]}. "
                        f"{(opinion_request_question() if random.random() < ASK_QUESTION_PROB else '')}"
                    ]

            if len(facts_same_nps) > 0 and not is_sensitive_case:
                logger.info("Found special nounphrases for facts. Return fact with the same nounphrase.")
                cands += [choice(facts_same_nps)]
                confs += [0.5]
                attrs += [{"type": "nounphrase_fact"}]
                human_attrs += [{}]
                bot_attrs += [{}]

            total_time = time.time() - st_time
            logger.info(f"dummy_skill exec time: {total_time:.3f}s")
            asyncio.create_task(
                callback(task_id=payload["task_id"], response=[cands, confs, human_attrs, bot_attrs, attrs])
            )
        except Exception as e:
            logger.exception(e)
            sentry_sdk.capture_exception(e)
            asyncio.create_task(callback(task_id=payload["task_id"], response=e))