X_train = X_train.sort_index() y_train = y_train.sort_index() regressor = LinearRegression() regressor.fit(X_train, y_train) #training the algorithm y_pred = regressor.predict(X_test) # print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) # print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) # print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) # print("R2:", metrics.r2_score(y_test, y_pred)) predicted_Y_entire = regressor.predict(X) print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) mape_v = mape(y_pred.reshape(-1, 1), y_test.values.reshape(-1, 1)) print('mape:', mape_v) r2 = metrics.r2_score(y_test, y_pred) print("R2:", r2) store_predict_points( Y_entire, predicted_Y_entire, 'output/test_linear_without_prediction_r2_' + str(r2) + '.csv') # df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) # df.plot(kind='bar',figsize=(10, 8)) # plt.grid(which='major', linestyle='-', linewidth='0.5', color='green') # plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black') # plt.show()
strides=1, activation='relu', dilation_rate=4)) model.add(Flatten()) model.add(Dropout(rate=0.05)) model.add(Dense(HORIZON, activation='linear')) model.compile(optimizer='adam', loss='mse') print(model.summary()) earlystop = EarlyStopping(monitor='val_loss', patience=10) history = model.fit(X_train, y_train, batch_size=BATCH_SIZE, epochs=EPOCHS, callbacks=[earlystop], verbose=1) y_pred = model.predict(X_test) predicted_Y_entire = model.predict(X) print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) mape_v = mape(y_pred.reshape(-1, 1), y_test.values.reshape(-1, 1)) print('mape:', mape_v) r2 = metrics.r2_score(y_test, y_pred) print("R2:", r2) store_predict_points( Y_entire, predicted_Y_entire, 'output/test_cnn_without_prediction_epochs_r2_' + str(r2) + '.csv')
Y_entire = entire_inputs['target_load'] predicted_Y_entire, predicted_trends_entire = model.predict(X_entire) if y_scaler is not None: y1_test = y_scaler.inverse_transform(y1_test) y1_preds = y_scaler.inverse_transform(y1_preds) predicted_Y_entire = y_scaler.inverse_transform(predicted_Y_entire) y1_test, y1_preds = flatten_test_predict(y1_test, y1_preds) Y_entire, predicted_Y_entire = flatten_test_predict(Y_entire, predicted_Y_entire) mse = mean_squared_error(y1_test, y1_preds) rmse_predict = sqrt(mse) evs = explained_variance_score(y1_test, y1_preds) mae = mean_absolute_error(y1_test, y1_preds) mse = mean_squared_error(y1_test, y1_preds) meae = median_absolute_error(y1_test, y1_preds) r_square = r2_score(y1_test, y1_preds) print('rmse_predict:', rmse_predict, "evs:", evs, "mae:", mae, "mse:", mse, "meae:", meae, "r2:", r_square) # output_actual_y = np.concatenate((y_train, y_valid, y1_test), axis=0) # output_predicted_y = np.concatenate((y_predicted_train, y_predicted_valid, y1_preds), axis=0) store_predict_points( Y_entire, predicted_Y_entire, 'output/test_lstm_prediction_epochs_' + str(EPOCHS) + '.csv')
predicted_counts = predictions_summary_frame['mean'] actual_counts = y_test['confirmed_cases'] y_pred = predicted_counts nb2_train_predictions = nb2_training_results.get_prediction(X_train) nb2_train_predictions_summary_frame = nb2_train_predictions.summary_frame() predicted_Y_train = nb2_train_predictions_summary_frame['mean'] predicted_Y_entire = pd.concat([predicted_Y_train, y_pred], axis=0) print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)) print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred)) print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) mape_v = mape(y_pred.values.reshape(-1, 1), y_test.values.reshape(-1, 1)) print('mape:', mape_v) r2 = metrics.r2_score(y_test, y_pred) print("R2:", r2) store_predict_points(Y_entire, predicted_Y_entire, 'output/test_nb2_prediction_r2_' + str(r2) + '.csv') # fig = plt.figure() # fig.suptitle('Predicted versus actual bicyclist counts on the Brooklyn bridge') # predicted, = plt.plot(X_test.index, predicted_counts, 'go-', label='Predicted counts') # actual, = plt.plot(X_test.index, actual_counts, 'ro-', label='Actual counts') # plt.legend(handles=[predicted, actual]) # plt.show()