Пример #1
0
 def _write_content_to_acl_json(acl_json_path, model_name,
                                npu_data_output_dir):
     load_dict = {
         "dump": {
             "dump_list": [{
                 "model_name": model_name
             }],
             "dump_path": npu_data_output_dir,
             "dump_mode": "all",
             "dump_op_switch": "off"
         }
     }
     if os.access(acl_json_path, os.W_OK):
         try:
             with open(acl_json_path, "w") as write_json:
                 try:
                     json.dump(load_dict, write_json)
                 except ValueError as write_json_except:
                     print(str(write_json_except))
                     raise AccuracyCompareException(
                         utils.ACCURACY_COMPARISON_WRITE_JSON_FILE_ERROR)
         except IOError as acl_json_file_except:
             utils.print_error_log('Failed to open"' + acl_json_path +
                                   '", ' + str(acl_json_file_except))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_OPEN_FILE_ERROR)
     else:
         utils.print_error_log(
             "The path {} does not have permission to write.Please check the path permission"
             .format(acl_json_path))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_INVALID_PATH_ERROR)
Пример #2
0
 def _make_inputs_data(self, inputs_tensor):
     if "" == self.args.input_path:
         input_path_list = []
         for index, tensor in enumerate(inputs_tensor):
             if not tensor.shape:
                 utils.print_error_log(
                     "The shape of %s is unknown. Please usr -i to assign the input path."
                     % tensor.name)
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_BIN_FILE_ERROR)
             input_data = np.random.random(tf_common.convert_tensor_shape(tensor.shape)) \
                 .astype(tf_common.convert_to_numpy_type(tensor.dtype))
             input_path = os.path.join(self.data_dir,
                                       "input_" + str(index) + ".bin")
             input_path_list.append(input_path)
             try:
                 input_data.tofile(input_path)
             except Exception as err:
                 utils.print_error_log("Failed to generate data %s. %s" %
                                       (input_path, err))
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_BIN_FILE_ERROR)
             utils.print_info_log(
                 "file name: {}, shape: {}, dtype: {}".format(
                     input_path, input_data.shape, input_data.dtype))
             self.input_path = ','.join(input_path_list)
     else:
         input_path = self.args.input_path.split(",")
         if len(inputs_tensor) != len(input_path):
             utils.print_error_log(
                 "the number of model inputs tensor is not equal the number of "
                 "inputs data, inputs tensor is: {}, inputs data is: {}".
                 format(len(inputs_tensor), len(input_path)))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_DATA_ERROR)
Пример #3
0
 def _shape_size_vs_bin_file_size(self, shape_size_array,
                                  bin_files_size_array):
     if len(shape_size_array) < len(bin_files_size_array):
         utils.print_error_log(
             "The number of input bin files is incorrect.")
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_BIN_FILE_ERROR)
     if self.om_parser.shape_range:
         for bin_file_size in bin_files_size_array:
             if bin_file_size not in shape_size_array:
                 utils.print_error_log(
                     "The size (%d) of bin file can not match the input of the model."
                     % bin_file_size)
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_BIN_FILE_ERROR)
     else:
         for shape_size, bin_file_size in zip(shape_size_array,
                                              bin_files_size_array):
             if shape_size == 0:
                 continue
             if shape_size != bin_file_size:
                 utils.print_error_log(
                     "The shape value is different from the size of the bin file."
                 )
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_BIN_FILE_ERROR)
Пример #4
0
 def msame_run(self, msame_dir):
     """
     Function Description:
         run msame project
     Parameter:
         msame_dir: msame project directory
     Return Value:
         npu dump data path
     Exception Description:
         when invalid npu dump data path throw exception
     """
     self._compare_shape_vs_bin_file()
     npu_data_output_dir = os.path.join(self.arguments.out_path,
                                        NPU_DUMP_DATA_BASE_PATH)
     utils.create_directory(npu_data_output_dir)
     model_name, extension = utils.get_model_name_and_extension(
         self.arguments.offline_model_path)
     acl_json_path = os.path.join(msame_dir, ACL_JSON_PATH)
     if not os.path.exists(acl_json_path):
         os.mknod(acl_json_path, mode=0o600)
     self._write_content_to_acl_json(acl_json_path, model_name,
                                     npu_data_output_dir)
     msame_cmd = [
         "./" + MSAME_COMMAND_PATH, "--model",
         self.arguments.offline_model_path, "--input",
         self.arguments.input_path, "--device", self.arguments.device,
         "--output", npu_data_output_dir
     ]
     self._make_msame_cmd_for_shape_range(msame_cmd)
     os.chdir(os.path.join(msame_dir, OUT_PATH))
     # do msame command
     utils.print_info_log(
         "Run command line: cd %s && %s" %
         (os.path.join(msame_dir, OUT_PATH), " ".join(msame_cmd)))
     utils.execute_command(msame_cmd)
     npu_dump_data_path, file_is_exist = utils.get_dump_data_path(
         npu_data_output_dir)
     if not file_is_exist:
         utils.print_error_log("The path {} dump data is not exist.".format(
             npu_dump_data_path))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_INVALID_PATH_ERROR)
     # net output data path
     npu_net_output_data_path, file_is_exist = utils.get_dump_data_path(
         npu_data_output_dir, True)
     if not file_is_exist:
         utils.print_error_log(
             "The path {} net output data is not exist.".format(
                 npu_net_output_data_path))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_INVALID_PATH_ERROR)
     self._convert_net_output_to_numpy(npu_net_output_data_path)
     return npu_dump_data_path, npu_net_output_data_path
Пример #5
0
 def _check_python_command_valid(cmd):
     try:
         output_bytes = subprocess.check_output(cmd, stderr=subprocess.STDOUT)
         output_text = output_bytes.decode("utf-8")
         if "Python 3" not in output_text:
             utils.print_error_log(
                 "The python version only supports the python 3 version family, %s" % " ".join(cmd))
             raise AccuracyCompareException(utils.ACCURACY_COMPARISON_PYTHON_VERSION_ERROR)
         python_version = output_text.split(" ")[1].strip()
         return python_version
     except subprocess.CalledProcessError as check_output_except:
         print(str(check_output_except))
         raise AccuracyCompareException(utils.ACCURACY_COMPARISON_PYTHON_COMMAND_ERROR)
Пример #6
0
 def _check_input_shape_fix_value(op_name, model_shape, input_shape):
     message = "fixed input tensor dim not equal to model input dim." \
               "tensor_name:%s, %s vs %s" % (op_name, str(input_shape), str(model_shape))
     if len(model_shape) != len(input_shape):
         utils.print_error_log(message)
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_INVALID_DATA_ERROR)
     for index, value in enumerate(model_shape):
         if value is None or isinstance(value, str):
             continue
         if input_shape[index] != value:
             utils.print_error_log(message)
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_DATA_ERROR)
Пример #7
0
 def _process_inputs(self, input_desc_array):
     value = []
     for input_object in input_desc_array:
         if SHAPE_OBJECT not in input_object:
             value.append(0)
             continue
         data_type = DTYPE_MAP.get(input_object.get(DTYPE_OBJECT))
         if not data_type:
             utils.print_error_log(
                 "The dtype attribute does not support {} value.".format(
                     input_object[DTYPE_OBJECT]))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_KEY_ERROR)
         data_type_size = np.dtype(data_type).itemsize
         if self.shape_range:
             range_shape_size_list = self._get_range_shape_size_list(
                 input_object)
             for item in range_shape_size_list:
                 value.append(item * data_type_size)
         else:
             item_sum = 1
             for num in input_object.get(SHAPE_OBJECT).get(DIM_OBJECT):
                 item_sum *= num
             value.append(item_sum * data_type_size)
     return value
Пример #8
0
 def net_output_compare(self, npu_net_output_data_path, golden_net_output_info):
     """
     net_output_compare
     """
     if not golden_net_output_info:
         return
     npu_dump_file = {}
     file_index = 0
     cmd = ["python3", "-V"]
     python_version = self._check_python_command_valid(cmd)
     msaccucmp_command_dir_path = os.path.join(self.arguments.cann_path, MSACCUCMP_DIR_PATH)
     msaccucmp_command_file_path = self._check_msaccucmp_file(msaccucmp_command_dir_path)
     utils.print_info_log("=================================compare Node_output=================================")
     utils.print_info_log("start to compare the Node_output at now, compare result is:")
     utils.print_warn_log("The comparison of Node_output may be incorrect in certain scenarios. If the precision"
                          " is abnormal, please check whether the mapping between the comparison"
                          " data is correct.")
     for dir_path, subs_paths, files in os.walk(npu_net_output_data_path):
         for each_file in sorted(files):
             if each_file.endswith(".npy"):
                 npu_dump_file[file_index] = os.path.join(dir_path, each_file)
                 msaccucmp_cmd = ["python" + python_version, msaccucmp_command_file_path, "compare", "-m",
                                  npu_dump_file.get(file_index), "-g", golden_net_output_info.get(file_index)]
                 status, compare_result = self.execute_msaccucmp_command(msaccucmp_cmd, True)
                 if status == 2 or status == 0:
                     self.save_net_output_result_to_csv(npu_dump_file.get(file_index),
                                                        golden_net_output_info.get(file_index),
                                                        compare_result)
                     utils.print_info_log("Compare Node_output:{} completely.".format(file_index))
                 else:
                     utils.print_error_log("Failed to execute command: %s" % " ".join(msaccucmp_cmd))
                     raise AccuracyCompareException(utils.ACCURACY_COMPARISON_INVALID_DATA_ERROR)
                 file_index += 1
     return
Пример #9
0
 def save_net_output_result_to_csv(self, npu_file, golden_file, result):
     """
     save_net_output_result_to_csv
     """
     result_file_path = None
     result_file_backup_path = None
     npu_file_name = os.path.basename(npu_file)
     golden_file_name = os.path.basename(golden_file)
     for dir_path, subs_paths, files in os.walk(self.arguments.out_path):
         if len(files) != 0:
             result_file_path = os.path.join(dir_path, files[0])
             result_file_backup = "{}_bak.csv".format(files[0].split(".")[0])
             result_file_backup_path = os.path.join(dir_path, result_file_backup)
             break
     try:
         # read result file and write it to backup file,update the result of compare Node_output
         with open(result_file_path, "r") as fp_read:
             with os.fdopen(os.open(result_file_backup_path, WRITE_FLAGS, WRITE_MODES), 'w',
                            newline="") as fp_write:
                 self._process_result_one_line(fp_write, fp_read, npu_file_name, golden_file_name, result)
         os.remove(result_file_path)
         os.rename(result_file_backup_path, result_file_path)
     except (OSError, SystemError, ValueError, TypeError, RuntimeError, MemoryError) as error:
         utils.print_error_log('Failed to write Net_output compare result')
         raise AccuracyCompareException(utils.ACCURACY_COMPARISON_NET_OUTPUT_ERROR)
     finally:
         pass
Пример #10
0
 def get_csv_object_by_cosine(self):
     """
     Function Description:
         get operators whose cosine value is less than 0.9
     Return Value:
         operators object or None
     Exception Description:
         when invalid data throw exception
     """
     result_data = os.walk(self.arguments.out_path)
     result_file_path = None
     for dir_path, subs_paths, files in result_data:
         if len(files) != 0:
             result_file_path = os.path.join(dir_path, files[0])
             break
     try:
         with open(result_file_path, "r") as csv_file:
             csv_object = csv.DictReader(csv_file)
             rows = [row for row in csv_object]
             for item in rows:
                 if float(item.get("CosineSimilarity")) < 0.9:
                     return item
     except IOError as csv_file_except:
         utils.print_error_log('Failed to open"' + result_file_path + '", ' + str(csv_file_except))
         raise AccuracyCompareException(utils.ACCURACY_COMPARISON_OPEN_FILE_ERROR)
     return None
Пример #11
0
 def _get_inputs_data(self, data_dir, inputs_tensor_info):
     inputs_map = {}
     if "" == self.args.input_path:
         for i, tensor_info in enumerate(inputs_tensor_info):
             input_data = np.random.random(tensor_info["shape"]).astype(
                 self._convert_to_numpy_type(tensor_info["type"]))
             inputs_map[tensor_info["name"]] = input_data
             file_name = "input_" + str(i) + ".bin"
             input_data.tofile(os.path.join(data_dir, file_name))
             utils.print_info_log(
                 "save input file name: {}, shape: {}, dtype: {}".format(
                     file_name, input_data.shape, input_data.dtype))
     else:
         input_path = self.args.input_path.split(",")
         if len(inputs_tensor_info) != len(input_path):
             utils.print_error_log(
                 "the number of model inputs tensor_info is not equal the number of "
                 "inputs data, inputs tensor_info is: {}, inputs data is: {}"
                 .format(len(inputs_tensor_info), len(input_path)))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_DATA_ERROR)
         for i, tensor_info in enumerate(inputs_tensor_info):
             input_data = np.fromfile(
                 input_path[i],
                 self._convert_to_numpy_type(tensor_info["type"])).reshape(
                     tensor_info["shape"])
             inputs_map[tensor_info["name"]] = input_data
             utils.print_info_log(
                 "load input file name: {}, shape: {}, dtype: {}".format(
                     os.path.basename(input_path[i]), input_data.shape,
                     input_data.dtype))
     return inputs_map
Пример #12
0
 def _convert_to_numpy_type(self, tensor_type):
     numpy_data_type = NODE_TYPE_TO_DTYPE_MAP.get(tensor_type)
     if numpy_data_type:
         return numpy_data_type
     else:
         utils.print_error_log(
             "unsupported tensor type: {}".format(tensor_type))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_TENSOR_TYPE_ERROR)
Пример #13
0
 def _make_msame_cmd_for_shape_range(self, msame_cmd):
     pattern = re.compile(r'^[0-9]+$')
     count = self.om_parser.get_net_output_count()
     if self.om_parser.shape_range:
         if not self.arguments.input_shape:
             utils.print_error_log(
                 'In the dynamic shape scenario, the "-s" or "--input-shape" is mandatory.'
             )
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         msame_cmd.append('--dymShape')
         msame_cmd.append('"%s"' % self.arguments.input_shape)
         if not self.arguments.output_size:
             if count > 0:
                 count_list = []
                 for _ in range(count):
                     count_list.append("90000000")
                 self.arguments.output_size = ",".join(count_list)
     if self.arguments.output_size:
         output_size_list = self.arguments.output_size.split(',')
         if len(output_size_list) != count:
             utils.print_error_log(
                 'The output size (%d) is not equal %d in model. Please check the "--output-size" argument.'
                 % (len(output_size_list), count))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         for item in output_size_list:
             item = item.strip()
             match = pattern.match(item)
             if match is None:
                 utils.print_error_log(
                     "The size (%s) is invalid. Please check the output size."
                     % self.arguments.output_size)
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
             if int(item) <= 0:
                 utils.print_error_log(
                     "The size (%s) must be large than zero. Please check the output size."
                     % self.arguments.output_size)
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         msame_cmd.append('--outputSize')
         msame_cmd.append(self.arguments.output_size)
Пример #14
0
 def _check_msaccucmp_file(msaccucmp_command_dir_path):
     for file_name in MSACCUCMP_FILE_NAME:
         msaccucmp_command_file_path = os.path.join(msaccucmp_command_dir_path, file_name)
         if os.path.exists(msaccucmp_command_file_path):
             return msaccucmp_command_file_path
         else:
             utils.print_warn_log(
                 'The path {} is not exist.Please check the file'.format(msaccucmp_command_file_path))
     utils.print_error_log(
         'Does not exist in {} directory msaccucmp.py and msaccucmp.pyc file'.format(msaccucmp_command_dir_path))
     raise AccuracyCompareException(utils.ACCURACY_COMPARISON_INVALID_PATH_ERROR)
Пример #15
0
def _generate_golden_data_model(args):
    model_name, extension = utils.get_model_name_and_extension(args.model_path)
    if ".pb" == extension:
        from tf.tf_dump_data import TfDumpData
        return TfDumpData(args)
    elif ".onnx" == extension:
        from onnx_model.onnx_dump_data import OnnxDumpData
        return OnnxDumpData(args)
    else:
        utils.print_error_log(
            "Only model files whose names end with .pb or .onnx are supported")
        raise AccuracyCompareException(
            utils.ACCURACY_COMPARISON_MODEL_TYPE_ERROR)
Пример #16
0
 def _run_tf_dbg_dump(self, cmd_line):
     """Run tf debug with pexpect, should set tf debug ui_type='readline'"""
     tf_dbg = pexpect.spawn(cmd_line)
     tf_dbg.logfile = sys.stdout.buffer
     try:
         tf_dbg.expect('tfdbg>', timeout=tf_common.TF_DEBUG_TIMEOUT)
         utils.print_info_log("Start to run. Please wait....")
         tf_dbg.sendline('run')
         index = tf_dbg.expect(
             ['An error occurred during the run', 'tfdbg>'],
             timeout=tf_common.TF_DEBUG_TIMEOUT)
         if index == 0:
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_PYTHON_COMMAND_ERROR)
     except Exception as ex:
         tf_dbg.sendline('exit')
         utils.print_error_log("Failed to run command: %s. %s" %
                               (cmd_line, ex))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_PYTHON_COMMAND_ERROR)
     tensor_name_path = os.path.join(self.tmp_dir, 'tf_tensor_names.txt')
     tf_dbg.sendline('lt > %s' % tensor_name_path)
     tf_dbg.expect('tfdbg>', timeout=tf_common.TF_DEBUG_TIMEOUT)
     if not os.path.exists(tensor_name_path):
         tf_dbg.sendline('exit')
         utils.print_error_log("Failed to save tensor name to file.")
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_PYTHON_COMMAND_ERROR)
     utils.print_info_log("Save tensor name to %s successfully." %
                          tensor_name_path)
     pt_command_list = self._make_pt_command(tensor_name_path)
     utils.print_info_log("Start to run %d pt commands. Please wait..." %
                          len(pt_command_list))
     for cmd in pt_command_list:
         tf_dbg.sendline(cmd.strip())
         tf_dbg.expect('tfdbg>', timeout=tf_common.TF_DEBUG_TIMEOUT)
     tf_dbg.sendline('exit')
     utils.print_info_log('Finish dump tf data.')
Пример #17
0
 def _load_graph(self):
     try:
         with tf.io.gfile.GFile(self.args.model_path, 'rb') as f:
             global_graph_def = tf.compat.v1.GraphDef.FromString(f.read())
         self.global_graph = tf.Graph()
         with self.global_graph.as_default():
             tf.import_graph_def(global_graph_def, name='')
     except Exception as err:
         utils.print_error_log("Failed to load the model %s. %s" %
                               (self.args.model_path, err))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_OPEN_FILE_ERROR)
     utils.print_info_log("Load the model %s successfully." %
                          self.args.model_path)
Пример #18
0
 def _load_json_file(json_file_path):
     """
     Function Description:
         load json file
     Parameter:
         json_file_path: json file path
     Return Value:
         json object
     Exception Description:
         when invalid json file path throw exception
     """
     try:
         with open(json_file_path, "r") as input_file:
             try:
                 return json.load(input_file)
             except Exception as load_input_file_except:
                 print(str(load_input_file_except))
                 raise AccuracyCompareException(
                     utils.ACCURACY_COMPARISON_PARSER_JSON_FILE_ERROR)
     except IOError as input_file_open_except:
         utils.print_error_log('Failed to open"' + json_file_path + '", ' +
                               str(input_file_open_except))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_OPEN_FILE_ERROR)
Пример #19
0
def get_inputs_data(inputs_tensor, input_paths):
    inputs_map = {}
    input_path = input_paths.split(",")
    for index, tensor in enumerate(inputs_tensor):
        try:
            input_data = np.fromfile(input_path[index],
                                     convert_to_numpy_type(tensor.dtype))
            if tensor.shape:
                input_data = input_data.reshape(tensor.shape)
            inputs_map[tensor] = input_data
            utils.print_info_log(
                "load file name: {}, shape: {}, dtype: {}".format(
                    os.path.basename(input_path[index]), input_data.shape,
                    input_data.dtype))
        except Exception as err:
            utils.print_error_log("Failed to load data %s. %s" %
                                  (input_path[index], err))
            raise AccuracyCompareException(
                utils.ACCURACY_COMPARISON_BIN_FILE_ERROR)
    return inputs_map
Пример #20
0
 def _catch_compare_result(log_line, catch):
     result = []
     try:
         if catch:
             # get the compare result
             info = log_line.decode().split(INFO_FLAG)
             if len(info) > 1:
                 info_content = info[1].strip().split(" ")
                 info_content = [item for item in info_content if item != '']
                 pattern_num = re.compile(r'^([0-9]+)\.?([0-9]+)?')
                 pattern_nan = re.compile(r'NaN', re.I)
                 match = pattern_num.match(info_content[0])
                 if match:
                     result = info_content
                 if not match and pattern_nan.match(info_content[0]):
                     result = info_content
         return result
     except (OSError, SystemError, ValueError, TypeError, RuntimeError, MemoryError):
         utils.print_warn_log('Failed to parse the alg compare result!')
         raise AccuracyCompareException(utils.ACCURACY_COMPARISON_NET_OUTPUT_ERROR)
     finally:
         pass
Пример #21
0
 def accuracy_network_compare(self):
     """
     Function Description:
         invoke the interface for network-wide comparsion
     Exception Description:
         when invalid  msaccucmp command throw exception
     """
     cmd = ["python3", "-V"]
     python_version = self._check_python_command_valid(cmd)
     msaccucmp_command_dir_path = os.path.join(self.arguments.cann_path, MSACCUCMP_DIR_PATH)
     msaccucmp_command_file_path = self._check_msaccucmp_file(msaccucmp_command_dir_path)
     self._check_pyc_to_python_version(msaccucmp_command_file_path, python_version)
     msaccucmp_cmd = ["python" + python_version, msaccucmp_command_file_path, "compare", "-m",
                      self.npu_dump_data_path, "-g",
                      self.cpu_dump_data_path, "-f", self.output_json_path, "-out", self.arguments.out_path]
     utils.print_info_log("msaccucmp command line: %s " % " ".join(msaccucmp_cmd))
     status_code, _ = self.execute_msaccucmp_command(msaccucmp_cmd)
     if status_code == 2 or status_code == 0:
         utils.print_info_log("Finish compare the files in directory %s with those in directory %s." % (
             self.npu_dump_data_path, self.cpu_dump_data_path))
     else:
         utils.print_error_log("Failed to execute command: %s" % " ".join(msaccucmp_cmd))
         raise AccuracyCompareException(utils.ACCURACY_COMPARISON_INVALID_DATA_ERROR)
Пример #22
0
 def _check_output_nodes_valid(self, outputs_tensor, node_list):
     for tensor in outputs_tensor:
         tensor_info = tensor.strip().split(':')
         if len(tensor_info) != 2:
             utils.print_error_log(
                 'Invalid output nodes (%s). Only support "name1:0;name2:1". Please check the output node.'
                 % tensor)
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         node_name = tensor_info[0].strip()  # 0 for node_name
         if not node_name:
             utils.print_error_log(
                 'Invalid output nodes (%s). Only support "name1:0;name2:1". Please check the output node.'
                 % tensor)
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         if node_name not in node_list:
             utils.print_error_log(
                 "The output node (%s) is not in the graph. Please check the output node."
                 % node_name)
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         index = tensor_info[1].strip()  # 1 for tensor_index
         if not index:
             utils.print_error_log(
                 'Invalid output nodes (%s). Only support "name1:0;name2:1". Please check the output node.'
                 % tensor)
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         op = self.global_graph.get_operation_by_name(node_name)
         pattern = re.compile(r'^[0-9]+$')
         match = pattern.match(index)
         if match is None:
             utils.print_error_log(
                 "The index (%s) of %s is invalid. Please check the output node."
                 % (index, node_name))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
         if int(index) < 0 or int(index) >= len(op.outputs):
             utils.print_error_log(
                 "The index (%s) of %s out of range [0, %d). Please check the output node."
                 % (index, node_name, len(op.outputs)))
             raise AccuracyCompareException(
                 utils.ACCURACY_COMPARISON_INVALID_PARAM_ERROR)
Пример #23
0
 def convert_model_to_json(self):
     """
     Function Description:
         convert om model to json
     Return Value:
         output json path
     Exception Description:
         when the model type is wrong throw exception
     """
     model_name, extension = utils.get_model_name_and_extension(
         self.arguments.offline_model_path)
     if ".om" != extension:
         utils.print_error_log(
             'The offline model file ends with an .om file.Please check {} file.'
             .format(self.arguments.offline_model_path))
         raise AccuracyCompareException(
             utils.ACCURACY_COMPARISON_MODEL_TYPE_ERROR)
     utils.check_file_or_directory_path(
         (os.path.realpath(self.arguments.cann_path)), True)
     atc_command_file_path = os.path.join(self.arguments.cann_path,
                                          ATC_FILE_PATH)
     utils.check_file_or_directory_path(atc_command_file_path)
     output_json_path = os.path.join(self.arguments.out_path, "model",
                                     model_name + ".json")
     # do the atc command to convert om to json
     utils.print_info_log('Start to converting the model to json')
     atc_cmd = [
         atc_command_file_path, "--mode=1",
         "--om=" + self.arguments.offline_model_path,
         "--json=" + output_json_path
     ]
     utils.print_info_log("ATC command line %s" % " ".join(atc_cmd))
     utils.execute_command(atc_cmd)
     utils.print_info_log("Complete model conversion to json %s." %
                          output_json_path)
     return output_json_path
Пример #24
0
 def _check_pyc_to_python_version(msaccucmp_command_file_path, python_version):
     if msaccucmp_command_file_path.endswith(".pyc"):
         if python_version != PYC_FILE_TO_PYTHON_VERSION:
             utils.print_error_log(
                 "The python version for executing {} must be 3.7.5".format(msaccucmp_command_file_path))
             raise AccuracyCompareException(utils.ACCURACY_COMPARISON_PYTHON_VERSION_ERROR)