if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) lr_params = lr_default_params() config = estimator_default_config() ds_obj = lr_params['ds_obj'] model_dir = lr_params['model_dir'] num_epochs = 20 batch_size = 32 model_params = lr_params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(lr_arch_fn) LR = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) LR.train(lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') LR.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') LR.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.78388655, auc = 0.7319471, global_step = 56227, loss = 0.4900751 eval in va dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7866109, auc = 0.7285157, global_step = 56227, loss = 0.48628032
if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) params = xDeepFM_default_params() config = estimator_default_config() ds_obj = params['ds_obj'] model_dir = params['model_dir'] num_epochs = 20 batch_size = 32 model_params = params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(xDeepFM_arch_fn) xDeepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) xDeepFM.train(lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') xDeepFM.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') xDeepFM.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7805073, auc = 0.76424193, global_step = 56227, loss = 0.4829209 eval in va dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.78272563, auc = 0.75082505, global_step = 56227, loss = 0.49588004 """
if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) params = DCN_default_params() config = estimator_default_config() ds_obj = params['ds_obj'] model_dir = params['model_dir'] num_epochs = 20 batch_size = 32 model_params = params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(DCN_arch_fn) DCN = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) DCN.train(lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') DCN.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') DCN.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7748605, auc = 0.7500452, global_step = 56227, loss = 0.49158287 eval in va dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.77625024, auc = 0.7450472, global_step = 56227, loss = 0.49128637 """
if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) params = fm_default_params() config = estimator_default_config() ds_obj = params['ds_obj'] model_dir = params['model_dir'] num_epochs = 20 batch_size = 32 model_params = params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(fm_arch_fn) FM = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) FM.train(lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') FM.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') FM.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7939908, auc = 0.77037174, global_step = 56227, loss = 0.4618437 eval in va dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7894003, auc = 0.752848, global_step = 56227, loss = 0.47008416
if __name__ == '__main__': tf.logging.set_verbosity(tf.logging.INFO) params = deepFM_default_params() config = estimator_default_config() ds_obj = params['ds_obj'] model_dir = params['model_dir'] num_epochs = 20 batch_size = 32 model_params = params['model_params'] print(model_params) if os.path.exists(model_dir): shutil.rmtree(model_dir) # clean model_dir model_fn = make_model_fn(deepFM_arch_fn) deepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir, params=model_params, config=config) deepFM.train( lambda: input_fn(ds_obj.file_tr, batch_size, num_epochs, True)) print('eval in tr dataset') deepFM.evaluate(lambda: input_fn(ds_obj.file_tr, batch_size, 1)) print('eval in va dataset') deepFM.evaluate(lambda: input_fn(ds_obj.file_va, batch_size, 1)) """ eval in tr dataset INFO:tensorflow:Saving dict for global step 56227: accuracy = 0.7947467, auc = 0.7710146, global_step = 56227, loss = 0.46117908 eval in va dataset