def main(server): num_rows = 7000 num_features = 32 num_epoch = 5 batch_size = 100 num_batches = (num_rows // batch_size) * num_epoch #who shall receive the output model_owner = ModelOwner('alice') data_schema0 = DataSchema([tf.float64] * 16, [0.0] * 16) data_schema1 = DataSchema([tf.int64] + [tf.float64] * 16, [0] + [0.0] * 16) data_owner_0 = DataOwner('alice', 'aliceTrainFile.csv', data_schema0, batch_size=batch_size) data_owner_1 = DataOwner('bob', 'bobTrainFileWithLabel.csv', data_schema1, batch_size=batch_size) tfe.set_protocol( tfe.protocol.Pond( tfe.get_config().get_player(data_owner_0.player_name), tfe.get_config().get_player(data_owner_1.player_name))) x_train_0 = tfe.define_private_input(data_owner_0.player_name, data_owner_0.provide_data) x_train_1 = tfe.define_private_input(data_owner_1.player_name, data_owner_1.provide_data) y_train = tfe.gather(x_train_1, 0, axis=1) y_train = tfe.reshape(y_train, [batch_size, 1]) #Remove bob's first column (which is label) x_train_1 = tfe.strided_slice(x_train_1, [0, 1], [x_train_1.shape[0], x_train_1.shape[1]], [1, 1]) x_train = tfe.concat([x_train_0, x_train_1], axis=1) model = LogisticRegression(num_features) reveal_weights_op = model_owner.receive_weights(model.weights) with tfe.Session() as sess: sess.run(tfe.global_variables_initializer(), tag='init') model.fit(sess, x_train, y_train, num_batches) # TODO(Morten) # each evaluation results in nodes for a forward pass being added to the graph; # maybe there's some way to avoid this, even if it means only if the shapes match # model.evaluate(sess, x_train, y_train, data_owner_0) # model.evaluate(sess, x_train, y_train, data_owner_1) sess.run(reveal_weights_op, tag='reveal')
tfe.set_protocol(tfe.protocol.Pond( tfe.get_config().get_player(data_owner_0.player_name), tfe.get_config().get_player(data_owner_1.player_name) )) x_train_0, y_train_0 = data_owner_0.provide_training_data() x_train_1, y_train_1 = data_owner_1.provide_training_data() x_test_0, y_test_0 = data_owner_0.provide_testing_data() x_test_1, y_test_1 = data_owner_1.provide_testing_data() x_train = tfe.concat([x_train_0, x_train_1], axis=0) y_train = tfe.concat([y_train_0, y_train_1], axis=0) model = LogisticRegression(num_features) reveal_weights_op = model_owner.receive_weights(model.weights) with tfe.Session() as sess: sess.run([tfe.global_variables_initializer(), data_owner_0.initializer, data_owner_1.initializer], tag='init') model.fit(sess, x_train, y_train, num_batches) # TODO(Morten) # each evaluation results in nodes for a forward pass being added to the graph; # maybe there's some way to avoid this, even if it means only if the shapes match model.evaluate(sess, x_test_0, y_test_0, data_owner_0) model.evaluate(sess, x_test_1, y_test_1, data_owner_1)
"""Private prediction with a single clients""" import tf_encrypted as tfe from common import LogisticRegression, PredictionClient num_features = 10 model = LogisticRegression(num_features) prediction_client = PredictionClient('prediction-client', num_features) x = tfe.define_private_input(prediction_client.player_name, prediction_client.provide_input) y = model.forward(x) reveal_output = tfe.define_output(prediction_client.player_name, y, prediction_client.receive_output) with tfe.Session() as sess: sess.run(tfe.global_variables_initializer(), tag='init') sess.run(reveal_output, tag='predict')