train_x, train_y = transfer2PyArrays(trainSet) #print2DArray(train_x, 'train_xSet', 'train_x') #print2DArray(train_y, 'train_ySet', 'train_y') # run the training part for i in range(train_steps): if (i % 1000 == 0): print('Training step: ', i) sess.run(train, {x: train_x, y: train_y}) print('End training: ', datetime.now()) #print('W1: ', sess.run(W1)) #print('b1: ', sess.run(b1)) # run the verification part # ========================= for factor in [0.7, 1.0, 1.2]: # retrieve a test case testCase = ipss_app.getTestCase(factor) test_x, test_y = transfer2PyArrays(testCase) #printArray(test_x, 'test_x') #printArray(test_y, 'test_y') # compute model output (network voltage) model_y = sess.run(nn_model(x), {x: [test_x]}) #printArray(model_y[0], 'model_y') print('max error: ', np.sqrt(np.max(np.abs(np.square(model_y - test_y)))))
#print2DArray(train_x, 'train_xSet', 'train_x') #print2DArray(train_y, 'train_ySet', 'train_y') # run the training part for i in range(train_steps): if (i % 1000 == 0): print('Training step: ', i) sess.run(train, {x: train_x, y: train_y}) print('End training: ', datetime.now()) ''' print('W1: ', sess.run(W1)) print('b1: ', sess.run(b1)) ''' # run the verification part # ========================= # retrieve a test case testCase = ipss_app.getTestCase() test_x, test_y = np.array([testCase])[0] #printArray(test_x, 'test_x') #printArray(test_y, 'test_y') # compute model output (network voltage) model_y = sess.run(nn_model(x), {x: [test_x]}) #printArray(model_y[0], 'model_y') netVoltage = transfer2JavaDblAry(model_y[0], size) print('model out mismatch: ', ipss_app.getMismatchInfo(netVoltage))