def test_matrix_filter_boston(self): X_train, X_test, y_train, y_test, feature_names = create_boston_data() model_task = ModelTask.REGRESSION run_error_analyzer_on_models(X_train, y_train, X_test, y_test, feature_names, model_task) # Test with single feature instead of two features run_error_analyzer_on_models(X_train, y_train, X_test, y_test, feature_names, model_task, matrix_features=[feature_names[0]]) # Note: Third feature has few unique values, tests code path # without binning data run_error_analyzer_on_models(X_train, y_train, X_test, y_test, feature_names, model_task, matrix_features=[feature_names[3]])
def test_importances_boston(self): X_train, X_test, y_train, y_test, feature_names = \ create_boston_data() models = create_models_regression(X_train, y_train) for model in models: categorical_features = [] run_error_analyzer(model, X_test, y_test, feature_names, categorical_features)
def boston(): x_train, x_test, y_train, y_test, features = create_boston_data() yield { DatasetConstants.X_TRAIN: x_train, DatasetConstants.X_TEST: x_test, DatasetConstants.Y_TRAIN: y_train, DatasetConstants.Y_TEST: y_test, DatasetConstants.FEATURES: features }
def test_modelanalysis_boston(self, manager_type): x_train, x_test, y_train, y_test, feature_names = \ create_boston_data() x_train = pd.DataFrame(x_train, columns=feature_names) x_test = pd.DataFrame(x_test, columns=feature_names) models = create_models_regression(x_train, y_train) x_train[LABELS] = y_train x_test[LABELS] = y_test manager_args = {DESIRED_RANGE: [10, 20]} for model in models: run_model_analysis(model, x_train, x_test, LABELS, ['RM'], manager_type, manager_args)
def test_matrix_filter_boston_filters(self): X_train, X_test, y_train, y_test, feature_names = create_boston_data() filters = [{ 'arg': [0.675], 'column': 'NOX', 'method': 'less and equal' }, { 'arg': [7.141000000000001], 'column': 'RM', 'method': 'greater' }] model_task = ModelTask.REGRESSION run_error_analyzer_on_models(X_train, y_train, X_test, y_test, feature_names, model_task, filters=filters)