Пример #1
0
 def __init__(self):
     super(Cognitive, self).__init__()
     self.api = cognitive_face
     file_path = Utilities.absolute_path(__file__, 'secret.json')
     with open(file_path) as data_file:
         data = json.load(data_file)
         KEY = data['secret']
         self.api.Key.set(KEY)
Пример #2
0
 def speak(alias):
     sounds_dir = Utilities.voices_path()
     save_dir = Utilities.absolute_path(sounds_dir, alias + '.mp3')
     if os.path.exists(save_dir) is True:
         # print save_dir
         pygame.mixer.init(44100, -16, 2, 2048)
         pygame.mixer.music.load(save_dir)
         pygame.mixer.music.play()
         time.sleep(1.05)
    def __init__(self, camera):
        """Initialization

                Args:
                        camera (int): index of camera to use
        """
        self.cascade_file = Utilities.absolute_path(__file__, 'cascade.xml')
        self.face_cascade = cv2.CascadeClassifier(self.cascade_file)
        self.video_capture = cv2.VideoCapture(camera)
        self.video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_WIDTH, 640)
        self.video_capture.set(cv2.cv.CV_CAP_PROP_FRAME_HEIGHT, 480)
        self.faces_captured = 1
    def start_capturing(self, is_register):
        """Start the camera, look for faces and write to file when faces are captured

                Args:
                        is_register (bool): determine if the session is
                        registering or identifying
                            If this argument is true then camera will capture 3
                            photos of user. Otherwise, only 1 photo is captured
        """
        if is_register is False:
            self.faces_captured = DEFAULT_FACES - 1
        while self.faces_captured < DEFAULT_FACES:
            # Read frame from video capture
            return_code, frame = self.video_capture.read()
            # Use Haar cascade to detect faces in captured frame
            faces = self.face_cascade.detectMultiScale(
                cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY),
                scaleFactor=1.1,
                minNeighbors=5,
                minSize=(30, 30),
                flags=cv2.cv.CV_HAAR_SCALE_IMAGE
            )
            # Looping through captured faces and write to file
            for (x, y, w, h) in faces:
                # All captured images will be saved in tmp folder in
                # core/face_recognizer
                filePath = Utilities.absolute_path(
                    __file__, 'tmp/face%d.jpg' % self.faces_captured)
                self.faces_captured += 1
                cv2.imwrite(filePath, frame)
                if is_register:
                    # Sleep 2 seconds so user can change face orientation
                    time.sleep(2)
                break

            if cv2.waitKey(1) & 0xFF == ord('q'):
                self.stop_capturing()
                break

            # cv2.imshow('Video', frame)

        self.stop_capturing()
Пример #5
0
    def register(group, alias):
        data_path = Utilities.absolute_path(Utilities.train_data_path(), alias)

        with open(os.path.join(data_path, 'name.txt'), 'r') as file:
            name = file.read()
            person = group.person_with_name(name)
            person.alias = alias
            create_voice_thread = threading.Thread(
                name="create_voice",
                target=Person.__create_voice,
                args=(name, alias))
            person.save()

            save_faces_thread = threading.Thread(name="save_faces",
                                                 target=Person.__save_faces,
                                                 args=(person, data_path))

            processes = ProcessParallel(create_voice_thread, save_faces_thread)
            processes.fork_threads()
            processes.start_all()
            # Wait until all threads are done
            processes.join_all()
Пример #6
0
 def create_voice(text, alias):
     sounds_dir = Utilities.voices_path()
     save_dir = Utilities.absolute_path(sounds_dir, alias + '.mp3')
     if os.path.exists(save_dir) is False:
         headers = {
             'Content-Type': 'application/json',
             'api_key': 'b5db987b5a944ff78097d435a5a564dc'
         }
         try:
             response = requests.request(
                 'POST',
                 'http://api.openfpt.vn/text2speech/v3',
                 headers=headers,
                 data=text
             )
             if response.status_code not in (200, 202):
                 print response.status_code
             if response.text:
                 result = response.json()
                 if result['async']:
                     wget.download(result['async'], save_dir)
         except Exception as e:
             print e