def handler(event, context): start_time = time.time() # dataset setting file = event['file'] data_bucket = event['data_bucket'] dataset_type = event['dataset_type'] n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_bucket = event['tmp_bucket'] merged_bucket = event['merged_bucket'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Linear_Models assert optim.lower() in Optimization.All assert sync_mode.lower() in Synchronization.All # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] valid_ratio = event['valid_ratio'] shuffle_dataset = True random_seed = 100 print('bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # Read file from s3 read_start = time.time() lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) print("parse data cost {} s".format(time.time() - parse_start)) preprocess_start = time.time() # Creating data indices for training and validation splits: dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(valid_ratio * dataset_size)) if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # Creating data samplers and loaders: train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices) train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) n_train_batch = len(train_loader) validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler) print("preprocess data cost {} s, dataset size = {}".format( time.time() - preprocess_start, dataset_size)) model = linear_models.get_model(model_name, n_features, n_classes) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) train_start = time.time() # Training the Model for epoch in range(n_epochs): epoch_start = time.time() epoch_cal_time = 0 epoch_sync_time = 0 epoch_loss = 0 for batch_index, (items, labels) in enumerate(train_loader): # print("------worker {} epoch {} batch {}------".format(worker_index, epoch, batch_index)) batch_start = time.time() items = Variable(items.view(-1, n_features)) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(items) loss = criterion(outputs, labels) epoch_loss += loss.data loss.backward() if optim == "grad_avg": if sync_mode == "reduce" or sync_mode == "reduce_scatter": w_grad = model.linear.weight.grad.data.numpy() w_grad_shape = w_grad.shape b_grad = model.linear.bias.grad.data.numpy() b_grad_shape = b_grad.shape w_b_grad = np.concatenate( (w_grad.flatten(), b_grad.flatten())) batch_cal_time = time.time() - batch_start epoch_cal_time += batch_cal_time batch_sync_start = time.time() postfix = "{}_{}".format(epoch, batch_index) if sync_mode == "reduce": w_b_grad_merge = communicator.reduce_batch( w_b_grad, postfix) elif sync_mode == "reduce_scatter": w_b_grad_merge = communicator.reduce_scatter_batch( w_b_grad, postfix) w_grad_merge = w_b_grad_merge[:w_grad_shape[0] * w_grad_shape[1]]\ .reshape(w_grad_shape) / float(n_workers) b_grad_merge = w_b_grad_merge[w_grad_shape[0] * w_grad_shape[1]:]\ .reshape(b_grad_shape[0]) / float(n_workers) model.linear.weight.grad = Variable( torch.from_numpy(w_grad_merge)) model.linear.bias.grad = Variable( torch.from_numpy(b_grad_merge)) batch_sync_time = time.time() - batch_sync_start print("one {} round cost {} s".format( sync_mode, batch_sync_time)) epoch_sync_time += batch_sync_time elif sync_mode == "async": # async does step before sync optimizer.step() w = model.linear.weight.data.numpy() w_shape = w.shape b = model.linear.bias.data.numpy() b_shape = b.shape w_b = np.concatenate((w.flatten(), b.flatten())) batch_cal_time = time.time() - epoch_start epoch_cal_time += batch_cal_time batch_sync_start = time.time() # init model if worker_index == 0 and epoch == 0 and batch_index == 0: storage.save(w_b.tobytes(), Prefix.w_b_prefix, merged_bucket) w_b_merge = communicator.async_reduce( w_b, Prefix.w_b_prefix) # do not need average w_merge = w_b_merge[:w_shape[0] * w_shape[1]].reshape(w_shape) b_merge = w_b_merge[w_shape[0] * w_shape[1]:].reshape( b_shape[0]) model.linear.weight.data = torch.from_numpy(w_merge) model.linear.bias.data = torch.from_numpy(b_merge) batch_sync_time = time.time() - batch_sync_start print("one {} round cost {} s".format( sync_mode, batch_sync_time)) epoch_sync_time += batch_sync_time if sync_mode != "async": step_start = time.time() optimizer.step() epoch_cal_time += time.time() - step_start # print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f s, Loss: %.4f, batch cost %.4f s' # % (epoch + 1, n_epochs, batch_index + 1, n_train_batch, # time.time() - train_start, loss.data, time.time() - batch_start)) if optim == "model_avg": w = model.linear.weight.data.numpy() w_shape = w.shape b = model.linear.bias.data.numpy() b_shape = b.shape w_b = np.concatenate((w.flatten(), b.flatten())) epoch_cal_time += time.time() - epoch_start epoch_sync_start = time.time() postfix = str(epoch) if sync_mode == "reduce": w_b_merge = communicator.reduce_epoch(w_b, postfix) elif sync_mode == "reduce_scatter": w_b_merge = communicator.reduce_scatter_epoch(w_b, postfix) elif sync_mode == "async": if epoch == 0: storage.save(w_b.tobytes(), Prefix.w_b_prefix, merged_bucket) w_b_merge = communicator.async_reduce(w_b, Prefix.w_b_prefix) w_merge = w_b_merge[:w_shape[0] * w_shape[1]].reshape(w_shape) b_merge = w_b_merge[w_shape[0] * w_shape[1]:].reshape(b_shape[0]) if sync_mode == "reduce" or sync_mode == "reduce_scatter": w_merge = w_merge / float(n_workers) b_merge = b_merge / float(n_workers) model.linear.weight.data = torch.from_numpy(w_merge) model.linear.bias.data = torch.from_numpy(b_merge) print("one {} round cost {} s".format( sync_mode, time.time() - epoch_sync_start)) epoch_sync_time += time.time() - epoch_sync_start if worker_index == 0: delete_start = time.time() # model avg delete by epoch if optim == "model_avg" and sync_mode != "async": communicator.delete_expired_epoch(epoch) elif optim == "grad_avg" and sync_mode != "async": communicator.delete_expired_batch(epoch, batch_index) epoch_sync_time += time.time() - delete_start # Test the Model test_start = time.time() n_test_correct = 0 n_test = 0 test_loss = 0 for items, labels in validation_loader: items = Variable(items.view(-1, n_features)) labels = Variable(labels) outputs = model(items) test_loss += criterion(outputs, labels).data _, predicted = torch.max(outputs.data, 1) n_test += labels.size(0) n_test_correct += (predicted == labels).sum() test_time = time.time() - test_start print( 'Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f: ' 'calculation cost = %.4f s, synchronization cost %.4f s, test cost %.4f s, ' 'accuracy of the model on the %d test samples: %d %%, loss = %f' % (epoch + 1, n_epochs, batch_index + 1, n_train_batch, time.time() - train_start, epoch_loss.data, time.time() - epoch_start, epoch_cal_time, epoch_sync_time, test_time, n_test, 100. * n_test_correct / n_test, test_loss / n_test)) if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context): start_time = time.time() # dataset setting file = event['file'] data_bucket = event['data_bucket'] dataset_type = event['dataset_type'] n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_bucket = event['tmp_bucket'] merged_bucket = event['merged_bucket'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Sparse_Linear_Models assert optim.lower() == Optimization.ADMM assert sync_mode.lower() in [Synchronization.Reduce, Synchronization.Reduce_Scatter] # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] valid_ratio = event['valid_ratio'] n_admm_epochs = event['n_admm_epochs'] lam = event['lambda'] rho = event['rho'] print('data bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # Read file from s3 read_start = time.time() lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) print("parse data cost {} s".format(time.time() - parse_start)) preprocess_start = time.time() # Creating data indices for training and validation splits: dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(valid_ratio * dataset_size)) shuffle_dataset = True random_seed = 100 if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # split train set and test set train_set = [dataset[i] for i in train_indices] n_train_batch = math.floor(len(train_set) / batch_size) val_set = [dataset[i] for i in val_indices] print("preprocess data cost {} s, dataset size = {}" .format(time.time() - preprocess_start, dataset_size)) model = linear_models.get_sparse_model(model_name, train_set, val_set, n_features, n_epochs, learning_rate, batch_size) z, u = initialize_z_and_u(model.weight.data.size()) print("size of z = {}".format(z.shape)) print("size of u = {}".format(u.shape)) # Training the Model train_start = time.time() for admm_epoch in range(n_admm_epochs): print(">>> ADMM Epoch[{}]".format(admm_epoch + 1)) admm_epoch_start = time.time() admm_epoch_cal_time = 0 admm_epoch_comm_time = 0 admm_epoch_test_time = 0 for epoch in range(n_epochs): epoch_start = time.time() epoch_loss = 0. for batch_idx in range(n_train_batch): batch_start = time.time() batch_loss, batch_acc = model.one_batch() u_z = torch.from_numpy(u) - torch.from_numpy(z) new_grad = torch.add(model.weight, u_z).mul(rho) new_grad.mul_(-1.0 * learning_rate) model.weight.add_(new_grad) batch_loss = batch_loss.average + rho / 2.0 * torch.norm(model.weight + u_z, p=2).item() epoch_loss += batch_loss if batch_idx % 10 == 0: print("ADMM Epoch: [{}/{}], Epoch: [{}/{}], Batch: [{}/{}], " "time: {:.4f} s, batch cost {:.4f} s, loss: {}, accuracy: {}" .format(admm_epoch + 1, n_admm_epochs, epoch + 1, n_epochs, batch_idx + 1, n_train_batch, time.time() - train_start, time.time() - batch_start, batch_loss, batch_acc)) epoch_cal_time = time.time() - epoch_start admm_epoch_cal_time += epoch_cal_time # Test the Model test_start = time.time() test_loss, test_acc = model.evaluate() epoch_test_time = time.time() - test_start admm_epoch_test_time += epoch_test_time print("ADMM Epoch: [{}/{}] Epoch: [{}/{}] finishes, Batch: [{}/{}], " "Time: {:.4f}, Loss: {:.4f}, epoch cost {:.4f} s, " "calculation cost = {:.4f} s, test cost {:.4f} s, " "accuracy of the model on the {} test samples: {}, loss = {}" .format(admm_epoch + 1, n_admm_epochs, epoch + 1, n_epochs, batch_idx + 1, n_train_batch, time.time() - train_start, epoch_loss, time.time() - epoch_start, epoch_cal_time, epoch_test_time, len(val_set), test_acc, test_loss)) sync_start = time.time() w = model.weight.numpy() w_shape = w.shape b = np.array([model.bias], dtype=np.float32) b_shape = b.shape u_shape = u.shape w_b = np.concatenate((w.flatten(), b.flatten())) u_w_b = np.concatenate((u.flatten(), w_b.flatten())) postfix = "{}".format(admm_epoch) # admm does not support async if sync_mode == "reduce": u_w_b_merge = communicator.reduce_epoch(u_w_b, postfix) elif sync_mode == "reduce_scatter": u_w_b_merge = communicator.reduce_scatter_epoch(u_w_b, postfix) u_mean = u_w_b_merge[:u_shape[0] * u_shape[1]].reshape(u_shape) / float(n_workers) w_mean = u_w_b_merge[u_shape[0] * u_shape[1]: u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]]\ .reshape(w_shape) / float(n_workers) b_mean = u_w_b_merge[u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]:]\ .reshape(b_shape[0]) / float(n_workers) model.weight = torch.from_numpy(w_mean) model.bias = torch.from_numpy(b_mean) admm_epoch_comm_time += time.time() - sync_start print("one {} round cost {} s".format(sync_mode, admm_epoch_comm_time)) if worker_index == 0: delete_start = time.time() communicator.delete_expired_epoch(admm_epoch) admm_epoch_comm_time += time.time() - delete_start # z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam) # stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho) # print("stop = {}".format(stop)) # z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean) z = update_z(w_mean, u_mean, rho, n_workers, lam) u = u + model.weight.data.numpy() - z print("ADMM Epoch[{}] finishes, cost {} s, cal cost {} s, comm cost {} s, test cost {} s" .format(admm_epoch, time.time() - admm_epoch_start, admm_epoch_cal_time, admm_epoch_comm_time, admm_epoch_test_time)) # Test the Model test_loss, test_acc = model.evaluate() print("Train finish, cost {} s, accuracy of the model on the {} test samples = {}, loss = {}" .format(time.time() - train_start, len(val_set), test_acc, test_loss)) if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context): start_time = time.time() # dataset setting file = event['file'] data_bucket = event['data_bucket'] dataset_type = event['dataset_type'] n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_bucket = event['tmp_bucket'] merged_bucket = event['merged_bucket'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Linear_Models assert optim.lower() == Optimization.ADMM assert sync_mode.lower() in [Synchronization.Reduce, Synchronization.Reduce_Scatter] # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] valid_ratio = event['valid_ratio'] n_admm_epochs = event['n_admm_epochs'] lam = event['lambda'] rho = event['rho'] print('data bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # Read file from s3 read_start = time.time() lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) print("parse data cost {} s".format(time.time() - parse_start)) preprocess_start = time.time() # Creating data indices for training and validation splits: dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(valid_ratio * dataset_size)) shuffle_dataset = True random_seed = 100 if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # Creating data samplers and loaders: train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(val_indices) train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=train_sampler) n_train_batch = len(train_loader) validation_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, sampler=valid_sampler) print("preprocess data cost {} s, dataset size = {}" .format(time.time() - preprocess_start, dataset_size)) model = linear_models.get_model(model_name, n_features, n_classes) z, u = initialize_z_and_u(model.linear.weight.data.size()) print("size of z = {}".format(z.shape)) print("size of u = {}".format(u.shape)) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) # Training the Model train_start = time.time() for admm_epoch in range(n_admm_epochs): print(">>> ADMM Epoch[{}]".format(admm_epoch)) admm_epoch_start = time.time() admm_epoch_cal_time = 0 admm_epoch_sync_time = 0 admm_epoch_test_time = 0 for epoch in range(n_epochs): epoch_start = time.time() epoch_loss = 0. for batch_index, (items, labels) in enumerate(train_loader): batch_start = time.time() items = Variable(items.view(-1, n_features)) labels = Variable(labels) # Forward + Backward + Optimize optimizer.zero_grad() outputs = model(items) classify_loss = criterion(outputs, labels) epoch_loss += classify_loss.data u_z = torch.from_numpy(u) - torch.from_numpy(z) loss = classify_loss for name, param in model.named_parameters(): if name.split('.')[-1] == "weight": loss += rho / 2.0 * torch.norm(param + u_z, p=2) # loss = classify_loss + rho / 2.0 * torch.norm(torch.sum(model.linear.weight, u_z)) optimizer.zero_grad() loss.backward(retain_graph=True) optimizer.step() epoch_cal_time = time.time() - epoch_start admm_epoch_cal_time += epoch_cal_time # Test the Model test_start = time.time() n_test_correct = 0 n_test = 0 test_loss = 0 for items, labels in validation_loader: items = Variable(items.view(-1, n_features)) labels = Variable(labels) outputs = model(items) test_loss += criterion(outputs, labels).data _, predicted = torch.max(outputs.data, 1) n_test += labels.size(0) n_test_correct += (predicted == labels).sum() epoch_test_time = time.time() - test_start admm_epoch_test_time += epoch_test_time print('Epoch: [%d/%d], Step: [%d/%d], Time: %.4f, Loss: %.4f, epoch cost %.4f, ' 'cal cost %.4f s, test cost %.4f s, accuracy of the model on the %d test samples: %d %%, loss = %f' % (epoch + 1, n_epochs, batch_index + 1, n_train_batch, time.time() - train_start, epoch_loss, time.time() - epoch_start, epoch_cal_time, epoch_test_time, n_test, 100. * n_test_correct / n_test, test_loss / n_test)) sync_start = time.time() w = model.linear.weight.data.numpy() w_shape = w.shape b = model.linear.bias.data.numpy() b_shape = b.shape u_shape = u.shape w_b = np.concatenate((w.flatten(), b.flatten())) u_w_b = np.concatenate((u.flatten(), w_b.flatten())) postfix = "{}".format(admm_epoch) # admm does not support async if sync_mode == "reduce": u_w_b_merge = communicator.reduce_epoch(u_w_b, postfix) elif sync_mode == "reduce_scatter": u_w_b_merge = communicator.reduce_scatter_epoch(u_w_b, postfix) u_mean = u_w_b_merge[:u_shape[0] * u_shape[1]].reshape(u_shape) / float(n_workers) w_mean = u_w_b_merge[u_shape[0] * u_shape[1]: u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]]\ .reshape(w_shape) / float(n_workers) b_mean = u_w_b_merge[u_shape[0] * u_shape[1] + w_shape[0] * w_shape[1]:]\ .reshape(b_shape[0]) / float(n_workers) model.linear.weight.data = torch.from_numpy(w_mean) model.linear.bias.data = torch.from_numpy(b_mean) admm_epoch_sync_time += time.time() - sync_start if worker_index == 0: delete_start = time.time() communicator.delete_expired_epoch(admm_epoch) admm_epoch_sync_time += time.time() - delete_start # z, u, r, s = update_z_u(w, z, u, rho, num_workers, lam) # stop = check_stop(ep_abs, ep_rel, r, s, dataset_size, num_features, w, z, u, rho) # print("stop = {}".format(stop)) # z = num_workers * rho / (2 * lam + num_workers * rho) * (w + u_mean) z = update_z(w_mean, u_mean, rho, n_workers, lam) u = u + model.linear.weight.data.numpy() - z print("ADMM Epoch[{}] Epoch[{}] finishes, cost {} s, cal cost {} s, sync cost {} s, test cost {} s" .format(admm_epoch, epoch, time.time() - admm_epoch_start, admm_epoch_cal_time, admm_epoch_sync_time, admm_epoch_test_time)) # Test the Model n_test_correct = 0 n_test = 0 test_loss = 0 for items, labels in validation_loader: items = Variable(items.view(-1, n_features)) labels = Variable(labels) outputs = model(items) test_loss += criterion(outputs, labels).data _, predicted = torch.max(outputs.data, 1) n_test += labels.size(0) n_test_correct += (predicted == labels).sum() print('Train finish, time = %.4f, accuracy of the model on the %d test samples: %d %%, loss = %f' % (time.time() - train_start, n_test, 100. * n_test_correct / n_test, test_loss / n_test)) if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context): start_time = time.time() # dataset setting train_file = event['train_file'] test_file = event['test_file'] data_bucket = event['data_bucket'] n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_bucket = event['tmp_bucket'] merged_bucket = event['merged_bucket'] cp_bucket = event['cp_bucket'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Deep_Models assert optim.lower() in Optimization.All assert sync_mode.lower() in Synchronization.All # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] start_epoch = event['start_epoch'] run_epochs = event['run_epochs'] function_name = event['function_name'] print('data bucket = {}'.format(data_bucket)) print("train file = {}".format(train_file)) print("test file = {}".format(test_file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) print('start epoch = {}'.format(start_epoch)) print('run epochs = {}'.format(run_epochs)) print("Run function {}, round: {}/{}, epoch: {}/{} to {}/{}" .format(function_name, int(start_epoch/run_epochs) + 1, math.ceil(n_epochs / run_epochs), start_epoch + 1, n_epochs, start_epoch + run_epochs, n_epochs)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # download file from s3 local_dir = "/tmp" read_start = time.time() storage.download(data_bucket, train_file, os.path.join(local_dir, train_file)) storage.download(data_bucket, test_file, os.path.join(local_dir, test_file)) print("download file from s3 cost {} s".format(time.time() - read_start)) train_set = torch.load(os.path.join(local_dir, train_file)) test_set = torch.load(os.path.join(local_dir, test_file)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=100, shuffle=False) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print("read data cost {} s".format(time.time() - read_start)) random_seed = 100 torch.manual_seed(random_seed) device = 'cpu' net = deep_models.get_models(model_name).to(device) # Loss and Optimizer # Softmax is internally computed. # Set parameters to be updated. optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate) # load checkpoint model if it is not the first round if start_epoch != 0: checked_file = 'checkpoint_{}.pt'.format(start_epoch - 1) storage.download(cp_bucket, checked_file, os.path.join(local_dir, checked_file)) checkpoint_model = torch.load(os.path.join(local_dir, checked_file)) net.load_state_dict(checkpoint_model['model_state_dict']) optimizer.load_state_dict(checkpoint_model['optimizer_state_dict']) print("load checkpoint model at epoch {}".format(start_epoch - 1)) for epoch in range(start_epoch, min(start_epoch + run_epochs, n_epochs)): train_loss, train_acc = train_one_epoch(epoch, net, train_loader, optimizer, worker_index, communicator, optim, sync_mode) test_loss, test_acc = test(epoch, net, test_loader) print('Epoch: {}/{},'.format(epoch + 1, n_epochs), 'train loss: {}'.format(train_loss), 'train acc: {},'.format(train_acc), 'test loss: {}'.format(test_loss), 'test acc: {}.'.format(test_acc), ) if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) # training is not finished yet, invoke next round if epoch < n_epochs - 1: checkpoint_model = { 'epoch': epoch, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': train_loss.average } checked_file = 'checkpoint_{}.pt'.format(epoch) if worker_index == 0: torch.save(checkpoint_model, os.path.join(local_dir, checked_file)) storage.upload_file(cp_bucket, checked_file, os.path.join(local_dir, checked_file)) print("checkpoint model at epoch {} saved!".format(epoch)) print("Invoking the next round of functions. round: {}/{}, start epoch: {}, run epoch: {}" .format(int((epoch + 1) / run_epochs) + 1, math.ceil(n_epochs / run_epochs), epoch + 1, run_epochs)) lambda_client = boto3.client('lambda') payload = { 'train_file': event['train_file'], 'test_file': event['test_file'], 'data_bucket': event['data_bucket'], 'n_features': event['n_features'], 'n_classes': event['n_classes'], 'n_workers': event['n_workers'], 'worker_index': event['worker_index'], 'tmp_bucket': event['tmp_bucket'], 'merged_bucket': event['merged_bucket'], 'cp_bucket': event['cp_bucket'], 'model': event['model'], 'optim': event['optim'], 'sync_mode': event['sync_mode'], 'lr': event['lr'], 'batch_size': event['batch_size'], 'n_epochs': event['n_epochs'], 'start_epoch': epoch + 1, 'run_epochs': event['run_epochs'], 'function_name': event['function_name'] } lambda_client.invoke(FunctionName=function_name, InvocationType='Event', Payload=json.dumps(payload)) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))
def handler(event, context): # dataset data_bucket = event['data_bucket'] file = event['file'] dataset_type = event["dataset_type"] n_features = event['n_features'] tmp_bucket = event["tmp_bucket"] merged_bucket = event["merged_bucket"] # hyper-parameter n_clusters = event['n_clusters'] n_epochs = event["n_epochs"] threshold = event["threshold"] sync_mode = event["sync_mode"] n_workers = event["n_workers"] worker_index = event['worker_index'] assert sync_mode.lower() in [ Synchronization.Reduce, Synchronization.Reduce_Scatter ] print('data bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('num clusters = {}'.format(n_clusters)) print('sync mode = {}'.format(sync_mode)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # Reading data from S3 read_start = time.time() lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) if dataset_type == "dense_libsvm": dataset = dataset.ins_np data_type = dataset.dtype centroid_shape = (n_clusters, dataset.shape[1]) elif dataset_type == "sparse_libsvm": dataset = dataset.ins_list first_entry = dataset[0].to_dense().numpy() data_type = first_entry.dtype centroid_shape = (n_clusters, first_entry.shape[1]) print("parse data cost {} s".format(time.time() - parse_start)) print("dataset type: {}, dtype: {}, Centroids shape: {}, num_features: {}". format(dataset_type, data_type, centroid_shape, n_features)) init_centroids_start = time.time() if worker_index == 0: if dataset_type == "dense_libsvm": centroids = dataset[0:n_clusters] elif dataset_type == "sparse_libsvm": centroids = sparse_centroid_to_numpy(dataset[0:n_clusters], n_clusters) storage.save(centroids.tobytes(), Prefix.KMeans_Init_Cent + "-1", merged_bucket) print("generate initial centroids takes {} s".format( time.time() - init_centroids_start)) else: centroid_bytes = storage.load_or_wait(Prefix.KMeans_Init_Cent + "-1", merged_bucket).read() centroids = centroid_bytes2np(centroid_bytes, n_clusters, data_type) if centroid_shape != centroids.shape: raise Exception("The shape of centroids does not match.") print("Waiting for initial centroids takes {} s".format( time.time() - init_centroids_start)) model = cluster_models.get_model(dataset, centroids, dataset_type, n_features, n_clusters) train_start = time.time() for epoch in range(n_epochs): epoch_start = time.time() # rearrange data points model.find_nearest_cluster() local_cent = model.get_centroids("numpy").reshape(-1) local_cent_error = np.concatenate( (local_cent.flatten(), np.array([model.error]))) epoch_cal_time = time.time() - epoch_start # sync local centroids and error epoch_sync_start = time.time() postfix = str(epoch) if sync_mode == "reduce": cent_error_merge = communicator.reduce_epoch( local_cent_error, postfix) elif sync_mode == "reduce_scatter": cent_error_merge = communicator.reduce_scatter_epoch( local_cent_error, postfix) cent_merge = cent_error_merge[:-1].reshape(centroid_shape) / float( n_workers) error_merge = cent_error_merge[-1] / float(n_workers) model.centroids = cent_merge model.error = error_merge epoch_sync_time = time.time() - epoch_sync_start print( "Epoch[{}] Worker[{}], error = {}, cost {} s, cal cost {} s, sync cost {} s" .format(epoch, worker_index, model.error, time.time() - epoch_start, epoch_cal_time, epoch_sync_time)) if model.error < threshold: break if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) print("Worker[{}] finishes training: Error = {}, cost {} s".format( worker_index, model.error, time.time() - train_start)) return
def handler(event, context): # dataset data_bucket = event['data_bucket'] file = event['file'] dataset_type = event["dataset_type"] n_features = event['n_features'] tmp_bucket = event["tmp_bucket"] merged_bucket = event["merged_bucket"] assert dataset_type == "sparse_libsvm" # hyper-parameter n_clusters = event['n_clusters'] n_epochs = event["n_epochs"] threshold = event["threshold"] sync_mode = event["sync_mode"] n_workers = event["n_workers"] worker_index = event['worker_index'] assert sync_mode.lower() in [ Synchronization.Reduce, Synchronization.Reduce_Scatter ] print('data bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('num clusters = {}'.format(n_clusters)) print('sync mode = {}'.format(sync_mode)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # Reading data from S3 read_start = time.time() lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) train_set = dataset.ins_list np_dtype = train_set[0].to_dense().numpy().dtype centroid_shape = (n_clusters, n_features) print("parse data cost {} s".format(time.time() - parse_start)) print("dataset type: {}, data type: {}, centroids shape: {}".format( dataset_type, np_dtype, centroid_shape)) # initialize centroids init_centroids_start = time.time() if worker_index == 0: centroids_np = sparse_centroid_to_numpy(train_set[0:n_clusters], n_clusters) storage.save(centroids_np.tobytes(), Prefix.KMeans_Init_Cent + "-1", merged_bucket) else: centroid_bytes = storage.load_or_wait(Prefix.KMeans_Init_Cent + "-1", merged_bucket).read() centroids_np = np.frombuffer(centroid_bytes, dtype=np_dtype).reshape(centroid_shape) centroids = torch.from_numpy(centroids_np) print("initial centroids cost {} s".format(time.time() - init_centroids_start)) model = cluster_models.get_model(train_set, centroids, dataset_type, n_features, n_clusters) assert isinstance(model, SparseKMeans) train_start = time.time() for epoch in range(n_epochs): epoch_start = time.time() # rearrange data points model.find_nearest_cluster() local_cent = model.get_centroids("numpy").astype( np.float32).reshape(-1) local_cent_error = np.concatenate( (local_cent.flatten(), np.array([model.error], dtype=np.float32))) epoch_cal_time = time.time() - epoch_start # sync local centroids and error epoch_sync_start = time.time() postfix = str(epoch) if sync_mode == "reduce": cent_error_merge = communicator.reduce_epoch( local_cent_error, postfix) elif sync_mode == "reduce_scatter": cent_error_merge = communicator.reduce_scatter_epoch( local_cent_error, postfix) print("one {} round cost {} s".format(sync_mode, time.time() - epoch_sync_start)) cent_merge = cent_error_merge[:-1].reshape(centroid_shape) / float( n_workers) print("merged centroids shape = {}".format(cent_merge.shape)) error_merge = cent_error_merge[-1] / float(n_workers) model.centroids = [ torch.from_numpy(c).reshape(1, n_features).to_sparse() for c in cent_merge ] model.error = error_merge epoch_sync_time = time.time() - epoch_sync_start print( "Epoch[{}] Worker[{}], error = {}, cost {} s, cal cost {} s, sync cost {} s" .format(epoch, worker_index, model.error, time.time() - epoch_start, epoch_cal_time, epoch_sync_time)) if model.error < threshold: break if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) print("Worker[{}] finishes training: Error = {}, cost {} s".format( worker_index, model.error, time.time() - train_start)) return
def handler(event, context): start_time = time.time() # dataset setting file = event['file'] data_bucket = event['data_bucket'] dataset_type = event['dataset_type'] assert dataset_type == "sparse_libsvm" n_features = event['n_features'] n_classes = event['n_classes'] n_workers = event['n_workers'] worker_index = event['worker_index'] tmp_bucket = event['tmp_bucket'] merged_bucket = event['merged_bucket'] # training setting model_name = event['model'] optim = event['optim'] sync_mode = event['sync_mode'] assert model_name.lower() in MLModel.Sparse_Linear_Models assert optim.lower() in Optimization.All assert sync_mode.lower() in Synchronization.All # hyper-parameter learning_rate = event['lr'] batch_size = event['batch_size'] n_epochs = event['n_epochs'] valid_ratio = event['valid_ratio'] shuffle_dataset = True random_seed = 100 print('bucket = {}'.format(data_bucket)) print("file = {}".format(file)) print('number of workers = {}'.format(n_workers)) print('worker index = {}'.format(worker_index)) print('model = {}'.format(model_name)) print('optimization = {}'.format(optim)) print('sync mode = {}'.format(sync_mode)) storage = S3Storage() communicator = S3Communicator(storage, tmp_bucket, merged_bucket, n_workers, worker_index) # Read file from s3 read_start = time.time() lines = storage.load(file, data_bucket).read().decode('utf-8').split("\n") print("read data cost {} s".format(time.time() - read_start)) parse_start = time.time() dataset = libsvm_dataset.from_lines(lines, n_features, dataset_type) print("parse data cost {} s".format(time.time() - parse_start)) preprocess_start = time.time() # Creating data indices for training and validation splits: dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(valid_ratio * dataset_size)) if shuffle_dataset: np.random.seed(random_seed) np.random.shuffle(indices) train_indices, val_indices = indices[split:], indices[:split] # split train set and test set train_set = [dataset[i] for i in train_indices] n_train_batch = math.floor(len(train_set) / batch_size) val_set = [dataset[i] for i in val_indices] print("preprocess data cost {} s, dataset size = {}".format( time.time() - preprocess_start, dataset_size)) model = linear_models.get_sparse_model(model_name, train_set, val_set, n_features, n_epochs, learning_rate, batch_size) train_start = time.time() # Training the Model for epoch in range(n_epochs): epoch_start = time.time() epoch_cal_time = 0 epoch_comm_time = 0 epoch_loss = 0. for batch_idx in range(n_train_batch): batch_start = time.time() batch_loss, batch_acc = model.one_batch() epoch_loss += batch_loss.average if optim == "grad_avg": if sync_mode == "reduce" or sync_mode == "reduce_scatter": w_b = np.concatenate((model.weight.numpy().flatten(), np.array([model.bias], dtype=np.float32))) batch_cal_time = time.time() - batch_start epoch_cal_time += batch_cal_time batch_comm_start = time.time() postfix = "{}_{}".format(epoch, batch_idx) if sync_mode == "reduce": w_b_merge = communicator.reduce_batch(w_b, postfix) elif sync_mode == "reduce_scatter": w_b_merge = communicator.reduce_scatter_batch( w_b, postfix) w_merge = w_b_merge[:n_features] / float(n_workers) b_merge = w_b_merge[-1] / float(n_workers) model.weight = torch.from_numpy(w_merge).reshape( n_features, 1) model.bias = float(b_merge) batch_comm_time = time.time() - batch_comm_start print("one {} round cost {} s".format( sync_mode, batch_comm_time)) epoch_comm_time += batch_comm_time elif sync_mode == "async": w_b = np.concatenate((model.weight.numpy().flatten(), np.array([model.bias], dtype=np.float32))) batch_cal_time = time.time() - batch_start epoch_cal_time += batch_cal_time batch_comm_start = time.time() # init model if worker_index == 0 and epoch == 0 and batch_idx == 0: storage.save(w_b.tobytes(), Prefix.w_b_prefix, merged_bucket) w_b_merge = communicator.async_reduce( w_b, Prefix.w_b_prefix) # async des not need average w_merge = w_b_merge[:n_features] b_merge = w_b_merge[-1] model.weight = torch.from_numpy(w_merge).reshape( n_features, 1) model.bias = float(b_merge) batch_comm_time = time.time() - batch_comm_start print("one {} round cost {} s".format( sync_mode, batch_comm_time)) epoch_comm_time += batch_comm_time if batch_idx % 10 == 0: print( 'Epoch: [%d/%d], Batch: [%d/%d], Time: %.4f s, Loss: %.4f, Accuracy: %.4f, batch cost %.4f s' % (epoch + 1, n_epochs, batch_idx + 1, n_train_batch, time.time() - train_start, batch_loss.average, batch_acc.accuracy, time.time() - batch_start)) if optim == "model_avg": w_b = np.concatenate((model.weight.numpy().flatten(), np.array([model.bias], dtype=np.float32))) epoch_cal_time += time.time() - epoch_start epoch_sync_start = time.time() postfix = str(epoch) if sync_mode == "reduce": w_b_merge = communicator.reduce_epoch(w_b, postfix) elif sync_mode == "reduce_scatter": w_b_merge = communicator.reduce_scatter_epoch(w_b, postfix) elif sync_mode == "async": if worker_index == 0 and epoch == 0: storage.save(w_b.tobytes(), Prefix.w_b_prefix, merged_bucket) w_b_merge = communicator.async_reduce(w_b, Prefix.w_b_prefix) w_merge = w_b_merge[:n_features] b_merge = w_b_merge[-1] # async des not need average if sync_mode == "reduce" or sync_mode == "reduce_scatter": w_merge = w_merge / float(n_workers) b_merge = b_merge / float(n_workers) model.weight = torch.from_numpy(w_merge).reshape(n_features, 1) model.bias = float(b_merge) print("one {} round cost {} s".format( sync_mode, time.time() - epoch_sync_start)) epoch_comm_time += time.time() - epoch_sync_start if worker_index == 0: delete_start = time.time() # model avg delete by epoch if optim == "model_avg" and sync_mode != "async": communicator.delete_expired_epoch(epoch) elif optim == "grad_avg" and sync_mode != "async": communicator.delete_expired_batch(epoch, batch_idx) epoch_comm_time += time.time() - delete_start # Test the Model test_start = time.time() test_loss, test_acc = model.evaluate() test_time = time.time() - test_start print( "Epoch: [{}/{}] finishes, Batch: [{}/{}], Time: {:.4f}, Loss: {:.4f}, epoch cost {:.4f} s, " "calculation cost = {:.4f} s, synchronization cost {:.4f} s, test cost {:.4f} s, " "accuracy of the model on the {} test samples: {}, loss = {}". format(epoch + 1, n_epochs, batch_idx + 1, n_train_batch, time.time() - train_start, epoch_loss, time.time() - epoch_start, epoch_cal_time, epoch_comm_time, test_time, len(val_set), test_acc.accuracy, test_loss.average)) if worker_index == 0: storage.clear(tmp_bucket) storage.clear(merged_bucket) end_time = time.time() print("Elapsed time = {} s".format(end_time - start_time))