def harmonic(geom_file, freq_range, freq_steps, damping): # add shell elements from mesh --------------------------------------------- with open(geom_file, 'rb') as fh: geom_data = json.load(fh) mesh = Mesh.from_data(geom_data['mesh']) s = structure.Structure() s.add_nodes_elements_from_mesh(mesh, element_type='ShellElement') # add displacements -------------------------------------------------------- pts = geom_data['pts'] nkeys = [] for pt in pts: nkeys.append(s.check_node_exists(pt)) s.add_set(name='support_nodes', type='NODE', selection=nkeys) supppots = FixedDisplacement(name='supports', nodes='support_nodes') s.add_displacement(supppots) # add materials and sections ----------------------------------------------- E35 = 35 * 10**9 concrete = ElasticIsotropic(name='MAT_CONCRETE', E=E35, v=0.2, p=2400) s.add_material(concrete) section = ShellSection(name='SEC_CONCRETE', t=0.020) s.add_section(section) prop = ElementProperties(type='SHELL', material='MAT_CONCRETE', section='SEC_CONCRETE', elsets=['ELSET_ALL']) s.add_element_properties(prop) # add loads ---------------------------------------------------------------- f_pts = geom_data['f_pts'] nodes = [s.check_node_exists(pt) for pt in f_pts] s.add_set(name='load_nodes', type='NODE', selection=nodes) load = PointLoad(name='hload', nodes='load_nodes', x=0, y=0, z=1, xx=0, yy=0, zz=0) s.add_load(load) # add modal step ----------------------------------------------------------- step = HarmonicStep(name='harmonic_analysis', displacements=['supports'], loads=['hload'], freq_range=freq_range, freq_steps=freq_steps, damping=damping) s.add_step(step) fnm = path + 'harmonic.inp' ansys.inp_generate(s, filename=fnm) # temp = path+'_Temp/' s.analyse(path=path, name='harmonic.inp', temp=None, software='ansys') return s
# Properties ep = Properties(name='ep', material='mat_steel', section='sec_pipe', elsets='elset_lines') mdl.add_element_properties(ep) # Displacements mdl.add_displacements([ PinnedDisplacement(name='disp_pins', nodes='nset_pins'), RollerDisplacementXZ(name='disp_rollers', nodes='nset_rollers')]) # Loads mdl.add_loads([ PointLoad(name='load_h', nodes='nset_load_h', x=4000), PointLoad(name='load_v', nodes='nset_load_v', z=-6000), ]) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements=['disp_pins', 'disp_rollers']), GeneralStep(name='step_loads', loads=['load_h', 'load_v'], iterations=50)]) mdl.steps_order = ['step_bc', 'step_loads'] # Summary mdl.summary() # Run (Sofistik)
# Sections mdl.add_section(RectangularSection(name='sec_rect', b=1, h=1)) # Properties ep = Properties(name='ep', material='mat_elastic', section='sec_rect', elsets='elset_lines') mdl.add_element_properties(ep) # Displacements mdl.add_displacement(FixedDisplacement(name='disp_fixed', nodes='nset_support')) # Loads mdl.add_load(PointLoad(name='load_point', nodes='nset_load', z=600)) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements=['disp_fixed']), GeneralStep(name='step_load', loads=['load_point'])]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary() # Run (Sofistik) # Note: Sofistik depends on input with correct SI units, model and data must be # converted from lbs and inches.
mdl.add( Properties(name='ep_plate', material='mat_elastic', section='sec_plate', elset='elset_mesh')) # Displacements mdl.add([ PinnedDisplacement(name='disp_left', nodes='nset_left'), RollerDisplacementX(name='disp_right', nodes='nset_right'), ]) # Loads mdl.add(PointLoad(name='load_point', nodes='nset_load', y=100, z=-300)) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_left', 'disp_right']), GeneralStep(name='step_load', loads=['load_point'], tolerance=1, iterations=500), ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary()
mdl.add([ Properties(name='ep_circ', material='mat_elastic', section='sec_circ', elset='elset_beams'), Properties(name='ep_shell', material='mat_elastic', section='sec_shell', elset='elset_shell'), ]) # Add loads mdl.add([ PointLoad(name='load_point', nodes='nset_top', x=10000, z=-10000), GravityLoad(name='load_gravity', elements='elset_beams'), ]) # print('load_point components: ', mdl.loads['load_point'].components) # Add displacements mdl.add(PinnedDisplacement(name='disp_pinned', nodes='nset_base')) # print('disp_pinned components: ', mdl.displacements['disp_pinned'].components) # Add steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_pinned']),
# Properties mdl.add( Properties(name='ep_tets', material='mat_elastic', section='sec_solid', elset='elset_tets')) # Displacementss mdl.add(PinnedDisplacement(name='disp_pinned', nodes='nset_base')) # Loads mdl.add(PointLoad(name='load_top', nodes='nset_top', y=100, z=100)) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_pinned']), GeneralStep(name='step_load', loads=['load_top']), ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary() # Run
# Section mdl.add(CircularSection(name='cirsec', r=.05)) mdl.add( Properties(name='ep', material='mat_elastic', section='cirsec', elset='elset_lines')) # Displacements boundary = network.leaves() mdl.add(PinnedDisplacement(name='disp', nodes=boundary)) # Loads mdl.add(PointLoad(name='load_weights', nodes='load_pts', z=-100)) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp']), GeneralStep(name='step_load', loads='load_weights'), ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary # mdl.summary() # Run exe = '/Applications/OpenSees3.2.1/OpenSees'
def compute_compas_fea(file_path, load_path, fea_engine='abaqus', recompute=True): """ Use abaqus (via compas_fea) to perform elastic FEA on the given frame under a given load case. If no load path is specified, elemental gravity will be assumbed to be applied. Parameters ---------- file_path : string full path to the frame shape's json file. load_path : type full path to the load case's json file. Returns ------- nD: dict Reactional nodal displacement key is the node id. value is (nodal_id, dx, dy, dz, theta_x, theta_y, theta_z). fR: dict Fixities reaction force, moment. key is the nodal id. value is [Fxyz, Mxyz] in the global axes. eR: dict Element-wise reaction force, moment (two ends). key is the element id. (Fxyz_1, Mxyz_1, Fxyz_2, Mxyz_2) """ root_dir = os.path.dirname(os.path.abspath(__file__)) temp_dir = os.path.join(root_dir, 'compas_fea-temp') if not os.path.exists(temp_dir): os.makedirs(temp_dir) file_json_name = file_path.split(os.sep)[-1] file_name = file_json_name.split('.')[0] print('compas_fea initing: file name {}'.format(file_name)) if not recompute: nD, fR, eR = parse_abaqus_result_json(file_name, temp_dir) return nD, fR, eR with open(file_path, 'r') as f: json_data = json.loads(f.read()) load_json_data = {} if load_path: with open(load_path, 'r') as f: load_json_data = json.loads(f.read()) # init an empty structure mdl = Structure(name=file_name, path=os.path.join(temp_dir, '')) # nodes mdl.add_nodes(nodes=parse_frame_nodes(json_data)) # elements elements = parse_elements(json_data) # align local axes with conmech sc = stiffness_checker(json_file_path=file_path, verbose=False) e_rot_mats = sc.get_element_local2global_rot_matrices() assert len(e_rot_mats) == len(elements) for e, mat in zip(elements, e_rot_mats): # compas_fea local axis convention is differrent to the one used in conmech: # in compas_fea # 'ex' axis represents the cross-section’s major axis # 'ey' is the cross-section’s minor axis # 'ez' is the axis along the element # TODO: this numpy array to list conversion # is essential to make compas_fea work... ez = list(mat[0][0:3]) # conmech longitude axis ex = list(mat[1][0:3]) # conmech cross sec major axis ey = list(mat[2][0:3]) # conmech cross sec minor axis mdl.add_element(nodes=e, type='BeamElement', axes={'ex': ex, 'ey': ey, 'ez': ez}) # print(mdl.elements[mdl.check_element_exists(nodes=e)]) assert_equal(mdl.element_count(), len(elements)) # Sets # just convenient aliases for referring to a group of elements mdl.add_set(name='elset_all', type='element', selection=list(range(mdl.element_count()))) mdl.add_set(name='nset_all', type='node', selection=list(range(mdl.node_count()))) fixities = parse_fixties(json_data) mdl.add_set(name='nset_fix', type='node', selection=[f[0] for f in fixities]) if load_json_data: pt_loads, include_sw = parse_load_case(load_json_data) # mdl.add_set(name='nset_pt_load', type='node', selection=[l[0] for l in pt_loads]) else: pt_loads = [] include_sw = True if pt_loads: mdl.add_set(name='nset_v_load_all', type='node', selection=[pl[0] for pl in pt_loads]) # Materials # Young’s modulus E [in units of Pa] # Poisson’s ratio v and density p [kg per cubic metre]. mat_json = json_data['material_properties'] mat_name = 'mat_' + mat_json['material_name'] E_scale = parse_pressure_scale_conversion(mat_json['youngs_modulus_unit']) p_scale = parse_density_scale_conversion(mat_json['density_unit']) mdl.add(ElasticIsotropic(name=mat_name, E=E_scale * mat_json['youngs_modulus'], v=mat_json['poisson_ratio'], p=p_scale * mat_json['density'])) # G_scale = parse_pressure_scale_conversion(mat_json['shear_modulus_unit']) # print('{}, {}'.format(mdl.materials['mat_' + mat_json['material_name']].G, G_scale * mat_json['shear_modulus'])) # assert_almost_equal(mdl.materials['mat_' + mat_json['material_name']].G['G'], G_scale * mat_json['shear_modulus']) # print('-----------material') # print(mdl.materials[mat_name]) # Sections # SI units should be used, this includes the use of metres m for cross-section dimensions, not millimetres mm. sec_name = 'sec_circ' mdl.add(CircularSection(name=sec_name, r=parse_circular_cross_sec_radius(json_data))) # print('-----------cross section') # print(mdl.sections[sec_name]) # Properties, associate material & cross sec w/ element sets mdl.add(Properties(name='ep_all', material=mat_name, section=sec_name, elset='elset_all')) # Displacements # pin supports for i, fix in enumerate(fixities): f_dof = [] for j in range(6): if fix[j+1] == 1: f_dof.append(0) else: f_dof.append(None) mdl.add(GeneralDisplacement(name='disp_fix_'+str(i), nodes=[fix[0]], x=f_dof[0], y=f_dof[1], z=f_dof[2], xx=f_dof[3], yy=f_dof[4], zz=f_dof[5])) # print('-----------fixities') # for i in range(len(fixities)): # print(mdl.displacements['disp_fix_'+str(i)]) # Loads if pt_loads: mdl.add([PointLoad(name='load_v_'+str(i), nodes=[pl[0]], x=pl[1], y=pl[2], z=pl[3], xx=pl[4], yy=pl[5], zz=pl[6]) for i, pl in enumerate(pt_loads)]) if include_sw: mdl.add(GravityLoad(name='load_gravity', elements='elset_all')) else: mdl.add(GravityLoad(name='load_gravity', elements='elset_all')) # print('-----------loads') # print(mdl.loads['load_gravity']) # for i in range(len(pt_loads)): # print(mdl.loads['load_v_'+str(i)]) # Steps loads_names = [] if pt_loads: loads_names.extend(['load_v_'+str(i) for i in range(len(pt_loads))]) if include_sw: loads_names.append('load_gravity') mdl.add([ GeneralStep(name='step_bc', displacements=['disp_fix_'+str(i) for i in range(len(fixities))]), GeneralStep(name='step_loads', loads=loads_names) ]) # a boundary condition step such as 'step_bc' above, should always be applied as the first step to prevent rigid body motion mdl.steps_order = ['step_bc', 'step_loads'] # Summary mdl.summary() # Run # node # 'u': nodal displacement: ux, uy, uz, um (magnitude) # 'ur': nodal rotation # 'rf': reaction force # 'cf': concentrated force (external load) # 'cm': concentrated moment (external load) # element # 's': beam stress (conmech cannot compute this at # version 0.1.1) # For beam, the following values are evaluated # at the "integration point" 'ip1' (middle point) # and pts along the axis: 'sp3, sp7, sp11, sp15' # sxx: axial # syy: hoop # sxy: torsion # smises: Von Mises # smaxp: max principal # sminp: min principal # 'sf': beam section force # sf1: axial # sf2: shear x # sf3: shear y if fea_engine == 'abaqus': mdl.analyse_and_extract(software='abaqus', fields=['u', 'ur', 'rf', 'rm', 'sf'], ndof=6, output=True) nD, fR, eR = parse_abaqus_result_json(file_name, temp_dir) elif fea_engine == 'opensees': mdl.analyse_and_extract(software='opensees', fields=['u'], exe=OPENSEES_PATH, ndof=6, output=True, save=True) raise NotImplementedError('opensees from compas_fea is not fully supported at this moment...') nD = {} fR = {} eR = {} # nD = mdl.get_nodal_results(step='step_load', field='ux', nodes='nset_all') print(mdl.results) else: raise NotImplementedError('FEA engine not supported!') return nD, fR, eR
# Properties mdl.add( Properties(name='ep_shell', material='mat_elastic', section='sec_shell', elset='mesh')) # Displacements mdl.add(PinnedDisplacement(name='disp_pin', nodes='supports')) # Loads mdl.add(GravityLoad(name='gravity', elements='all')) mdl.add(PointLoad(name='load_points', nodes='lpts1', x=0, y=0, z=-1000)) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_pin']), GeneralStep(name='step_load', loads=['gravity', 'load_points']), ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary() # Run
elsets='spring_top_left'), Properties(name='ep_tr', section='spring_elastic', elsets='spring_top_right') ]) # Displacements mdl.add_displacements([ PinnedDisplacement(name='disp_pins', nodes='pins'), RollerDisplacementXZ(name='disp_roller', nodes='middle') ]) # Loads mdl.add_load(PointLoad(name='load_middle', nodes='middle', z=-500)) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements=['disp_pins', 'disp_roller']), GeneralStep(name='step_load', loads=['load_middle']) ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary` mdl.summary() # Run (Sofistik)
# Properties ep = Properties(name='ep_strut', material='mat_elastic', section='sec_truss', elsets='elset_struts') mdl.add_element_properties(ep) # Displacements mdl.add_displacement(PinnedDisplacement(name='disp_pinned', nodes='nset_pins')) # Loads mdl.add_load(PointLoad(name='load_top', nodes='nset_top', z=-100000)) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements='disp_pinned'), GeneralStep(name='step_load', loads='load_top', nlmat=False) ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary() # Run (Abaqus)
# Displacements deg = pi / 180 mdl.add_displacements([ PinnedDisplacement(name='disp_bc_left', nodes='nset_left'), GeneralDisplacement(name='disp_bc_right', nodes='nset_right', y=0, z=0, xx=0), GeneralDisplacement(name='disp_left', nodes='nset_left', yy=30 * deg), ]) # Loads mdl.add_load(PointLoad(name='load_weights', nodes='nset_weights', z=-200.0)) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements=['disp_bc_left', 'disp_bc_right']), GeneralStep(name='step_load', loads=['load_weights'], displacements=['disp_left']) ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary()
elsets='elset_diag'), Properties(name='ep_stays', material='mat_steel', section='sec_stays', elsets='elset_stays') ]) # Displacements mdl.add_displacement(PinnedDisplacement(name='disp_pinned', nodes='nset_pins')) # Loads # Note: GravityLoad doesnt activate for OpenSees mdl.add_loads([ PointLoad(name='load_pl_v', nodes='nset_load_v', z=-15500), PointLoad(name='load_pl_h', nodes='nset_load_h', x=5000), GravityLoad(name='load_gravity', elements=['elset_diag', 'elset_main']) ]) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements=['disp_pinned']), GeneralStep(name='step_loads', loads=['load_pl_v', 'load_pl_h', 'load_gravity'], factor=1.5, increments=200) ]) mdl.steps_order = ['step_bc', 'step_loads']
# print(mdl.sections['section']) mdl.add( ElementProperties(name='property', material='steel', section='section', elset='trusses')) # print(mdl.element_properties['property']) mdl.add(PinnedDisplacement(name='pinned', nodes='supports')) # print(mdl.displacements['pinned']) mdl.add([ PointLoad(name='pointloads', nodes='loads', y=-50000), GravityLoad(name='gravity', elements='trusses', z=0, y=1), ]) # print(mdl.loads['pointloads']) # print(mdl.loads['gravity']) mdl.add([ GeneralStep(name='bc', displacements='pinned'), GeneralStep(name='loads', loads=['pointloads', 'gravity'], factor=1.5), ]) mdl.steps_order = ['bc', 'loads'] # print(mdl.steps['bc']) # print(mdl.steps['loads'])
elset='elset_ties'), Properties(name='ep_concrete', material='mat_concrete', section='sec_solid', elset='elset_tets'), ]) # Displacements mdl.add(RollerDisplacementY(name='disp_rollers', nodes='nset_supports')) # Loads mdl.add([ GravityLoad(name='load_gravity', elements='elset_tets'), PointLoad(name='load_point', nodes='nset_load', z=-5), ]) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_rollers']), GeneralStep(name='step_loads', loads=['load_gravity', 'load_point'], factor=1.35), ]) mdl.steps_order = ['step_bc', 'step_loads'] # Summary mdl.summary()
# Properties mdl.add( Properties(name='ep_shell', material='mat_steel', section='sec_shell', elset='elset_shells')) # Displacements mdl.add(FixedDisplacement(name='disp_pins', nodes=[0, 2, 8, 6])) # Loads mdl.add(PointLoad(name='load_v', nodes=[4], z=-1000)) # Steps mdl.add( GeneralStep(name='step_bc_loads', displacements=['disp_pins'], loads=['load_v'], nlgeom=False)) mdl.steps_order = ['step_bc_loads'] # Summary # mdl.summary() # Run (Abaqus)
mdl.add_set(name='nset_top', type='node', selection=nodes_top) mdl.add_set(name='nset_bot', type='node', selection=nodes_bot) #print(mdl.sets['nset_top']) #print(mdl.sets['nset_bot']) mdl.add([ ElasticIsotropic(name='mat_elastic', E=50 * 10**9, v=0.3, p=1), SolidSection(name='sec_solid'), ElementProperties(name='ep_tets', material='mat_elastic', section='sec_solid', elset='mesh_tets'), PinnedDisplacement(name='disp_pinned', nodes='nset_bot'), PointLoad(name='load_top', nodes='nset_top', y=20000, z=10000), GeneralStep(name='step_bc', displacements='disp_pinned'), GeneralStep(name='step_load', loads='load_top'), ]) mdl.steps_order = ['step_bc', 'step_load'] mdl.summary() mdl.analyse_and_extract(software='abaqus', fields=['u', 's']) rhino.plot_data(mdl, step='step_load', field='um') rhino.plot_data(mdl, step='step_load', field='smises') #rhino.plot_voxels(mdl, step='step_load', field='um', vdx=0.100) # make an extract faces slice # show in App
Properties(name='ep_wall', material='mat_concrete', section='sec_wall', elset='elset_wall', rebar=reb_wall), ]) # Displacements mdl.add(FixedDisplacement(name='disp_fixed', nodes='nset_fixed')) # Loads mdl.add([ GravityLoad(name='load_gravity', elements=['elset_wall', 'elset_plinth']), PointLoad(name='load_points', nodes='nset_loads', z=-20 * 10**3), ]) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_fixed']), GeneralStep(name='step_loads', loads=['load_gravity', 'load_points']), ]) mdl.steps_order = ['step_bc', 'step_loads'] # Summary mdl.summary() # Run
#------------------------------------------------------------------------------- # Properties mdl.add( Properties(name='ep_beam', material='mat_elastic', section='sec_beam', elset='elset_beams')) #------------------------------------------------------------------------------- # Displacements mdl.add(FixedDisplacement(name='disp_fixed', nodes='nset_support')) #------------------------------------------------------------------------------- # Loads mdl.add(PointLoad(name='load_point', nodes='nset_load', z=-1100.99)) #------------------------------------------------------------------------------- # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_fixed']), GeneralStep(name='step_load', loads=['load_point']), ]) mdl.steps_order = ['step_bc', 'step_load'] #------------------------------------------------------------------------------- # Summary mdl.summary() #------------------------------------------------------------------------------- # Run
# Properties mdl.add_element_properties( Properties(name='ep_tets', material='mat_elastic', section='sec_solid', elsets='elset_tets')) # Displacementss mdl.add_displacement(PinnedDisplacement(name='disp_pinned', nodes='base')) # Loads mdl.add_load(PointLoad(name='load_top', nodes='top', y=1000, z=1000)) # Steps mdl.add_steps([ GeneralStep(name='step_bc', displacements=['disp_pinned']), GeneralStep(name='step_load', loads=['load_top']) ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary() # Run (Abaqus)
mdl.add( ElementProperties(name='ep', material='concrete', section='shell', elset='mesh')) #print(mdl.element_properties['ep']) mdl.add(PinnedDisplacement(name='pinned', nodes='supports')) #print(mdl.displacements['pinned']) mdl.add([ GravityLoad(name='gravity', elements='mesh'), PointLoad(name='loads', nodes='loads', z=-1000), AreaLoad(name='pressure', elements='area', z=7000), ]) #print(mdl.loads['loads']) #print(mdl.loads['gravity']) #print(mdl.loads['pressure']) mdl.add([ GeneralStep(name='bc', displacements='pinned'), GeneralStep(name='loads', loads=['gravity', 'loads', 'pressure'], factor=1.5), BucklingStep(name='buckling', modes=3, loads=['gravity', 'loads', 'pressure'],
Properties(name='ep_beam', material='mat_elastic', section='sec_circular', elset='elset_beam')) # Displacements mdl.add([ PinnedDisplacement(name='disp_left', nodes='nset_left'), GeneralDisplacement(name='disp_right', nodes='nset_right', y=0, z=0, xx=0), GeneralDisplacement(name='disp_move', nodes='nset_right', yy=30 * deg), ]) # Loads mdl.add(PointLoad(name='load_weights', nodes='nset_weights', z=-1)) # Steps mdl.add([ GeneralStep(name='step_bc', displacements=['disp_left', 'disp_right']), GeneralStep(name='step_load', loads=['load_weights'], displacements=['disp_move']), ]) mdl.steps_order = ['step_bc', 'step_load'] # Summary mdl.summary()