Пример #1
0
def isInside(c):
    zN = Complex()
    for i in range(MAX):
        if zN.radius() > OUT_OF_MANDELBROT:
            return i
        zN = f(c, zN)
    return -1
Пример #2
0
from complex import Complex

a, b, c, d, e, f = map(float, input().split())

A = Complex(a, b)
B = Complex(c, d)
C = Complex(e, f)

print("x1 = ", (((B**2 - A * C * 4)**0.5) - B) / (A * 2))
print("x2 = ", (Complex(0, 0) - ((B**2 - A * C * 4)**0.5) - B) / (A * 2))
from qubit import Qubit, tensordot, Hadamard, Cnot, Measure, Identity, RCnot, randomQubit, PauliX, PauliY, PauliZ, M0, M1
from complex import Complex
import numpy as np
import math

#Inicjalizacja Bramek
X = PauliX()
Y = PauliY()
Z = PauliZ()
H = Hadamard()
CNOT = Cnot()
I = Identity()
M0 = M0()
M1 = M1()

x = Qubit(Complex(1, 0), Complex(0, 0))
y = Qubit(Complex(1, 0), Complex(0, 0))

#Splątanie

x = x * H
xy = tensordot(x, y)
xy = np.tensordot(CNOT, xy, axes=[1, 0])
print("splątany = ", xy)

#Pierwszy krok
print("What to code? type 00 , 01 , 10 or 11")
opcja = input()
if opcja == '00':
    II = np.kron(I, I)
    print("I and I gate: ", II)
Пример #4
0
def test_mul():
    """Test to make sure the __mul__ function works.

    form:
        z1 * z2 = (a1 * a2 − b1 * b2) + (a1 * b2 + a2 * b1)i
        Where z=complex number, a=real, b=imaginary


    """
    complexNumber1 = Complex(2, 0)
    complexNumber2 = Complex(0, 1)
    assert (complexNumber1 * complexNumber2) == Complex(0, 2), error

    complexNumber1 = Complex(0, 0)
    complexNumber2 = Complex(1, 0)
    assert (complexNumber1 * complexNumber2) == Complex(0, 0), error

    complexNumber1 = Complex(-3, -1)
    complexNumber2 = Complex(4, 4)
    assert (complexNumber1 * complexNumber2) == Complex(-8, -16), error
  
    complexNumber1 = Complex(-1, 2)
    complexNumber2 = Complex(-1, 2)
    assert (complexNumber1 * complexNumber2) == Complex(-3, -4), error
Пример #5
0
def test_sub():
    """Test to make sure the __sub__ function works.

    form:

        z1 − z2 = (a1 − a2) + (b1 − b2)i
        Where z=complex number, a=real, b=imaginary

    """
    complexNumber1 = Complex(2, 0)
    complexNumber2 = Complex(0, 1)
    assert (complexNumber1 - complexNumber2) == Complex(2, -1), error

    complexNumber1 = Complex(0, 0)
    complexNumber2 = Complex(1, 0)
    assert (complexNumber1 - complexNumber2) == Complex(-1, 0), error

    complexNumber1 = Complex(-5, -1)
    complexNumber2 = Complex(5, 4)
    assert (complexNumber1 - complexNumber2) == Complex(-10, -5), error

    complexNumber1 = Complex(-1, 2)
    complexNumber2 = Complex(-1, 2)
    assert (complexNumber1 - complexNumber2) == Complex(0, 0), error
Пример #6
0
def test_conj():
    """Test to make sure the conjugate() function works.

    form:
        !z = a − bi
        Where z=complex number, a=real, b=imaginary

    """
    complexNumber = Complex(2, 0)
    assert complexNumber.conjugate() == Complex(2, 0), error

    complexNumber = Complex(4, 7)
    assert complexNumber.conjugate() == Complex(4, -7), error

    complexNumber = Complex(0, 8)
    assert complexNumber.conjugate() == Complex(0, -8), error

    complexNumber = Complex(-1, -3)
    assert complexNumber.conjugate() == Complex(-1, 3), error
Пример #7
0
    def test_absolute_value(self):
        c1 = Complex(6, 8)

        self.assertEqual(c1.abs(), 10, "Should equal 10")
Пример #8
0
def Hadamard():
    return np.array([[Complex(1 / np.sqrt(2), 0),
                      Complex(1 / np.sqrt(2), 0)],
                     [Complex(1 / np.sqrt(2), 0),
                      Complex(-1 / np.sqrt(2), 0)]])
Пример #9
0
def PauliX():
    return np.array([[Complex(0, 0), Complex(1, 0)],
                     [Complex(1, 0), Complex(0, 0)]])
Пример #10
0
def M1():
    return np.array([[Complex(0, 0), Complex(0, 0)],
                     [Complex(0, 0), Complex(1, 0)]])
Пример #11
0
def Identity():
    return np.array([[Complex(1, 0), Complex(0, 0)],
                     [Complex(0, 0), Complex(1, 0)]])
Пример #12
0
def Toffoli():
    return np.array([[
        Complex(1, 0),
        Complex(0, 0),
        Complex(0, 0),
        Complex(0, 0),
        Complex(0, 0),
        Complex(0, 0),
        Complex(0, 0),
        Complex(0, 0)
    ],
                     [
                         Complex(0, 0),
                         Complex(1, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0)
                     ],
                     [
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(1, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0)
                     ],
                     [
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(1, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0)
                     ],
                     [
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(1, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0)
                     ],
                     [
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(1, 0),
                         Complex(0, 0),
                         Complex(0, 0)
                     ],
                     [
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(1, 0)
                     ],
                     [
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(0, 0),
                         Complex(1, 0),
                         Complex(0, 0)
                     ]])
Пример #13
0
def RCnot():
    return np.array(
        [[Complex(1, 0),
          Complex(0, 0),
          Complex(0, 0),
          Complex(0, 0)],
         [Complex(0, 0),
          Complex(0, 0),
          Complex(0, 0),
          Complex(1, 0)],
         [Complex(0, 0),
          Complex(0, 0),
          Complex(1, 0),
          Complex(0, 0)],
         [Complex(0, 0),
          Complex(1, 0),
          Complex(0, 0),
          Complex(0, 0)]])
Пример #14
0
def TNgate():
    return np.array([[Complex(1, 0), Complex(0, 0)],
                     [Complex(0, 0), PolarToComplex(1, 45)]])
Пример #15
0
    def test_add(self):
        c1 = Complex(10, 4)
        c2 = Complex(12, -2)

        self.assertEqual(str(c1.add(c2)), "22.00 + 2.00i", "Should equal '22.00 + 2.00i'")
Пример #16
0
def PauliY():
    return np.array([[Complex(0, 0), Complex(0, -1)],
                     [Complex(0, 1), Complex(0, 0)]])
Пример #17
0
    def test_multiply(self):
        c1 = Complex(13, -2)
        c2 = Complex(-2, -5)

        self.assertEqual(str(c1.multiply(c2)), "-36.00 - 61.00i", "Should equal '-36.00 - 61.00i'")
Пример #18
0
 def test_sub(self):
     self.assertEqual(Complex(10, 5).__sub__(Complex(10, 5)), Complex(0, 0))
     self.assertEqual((Complex(10, 5) - Complex(10, 5)), Complex(0, 0))
     self.assertEqual((Complex(103, 55) - Complex(13, 15)), Complex(90, 40))
     self.assertEqual((4 - Complex(13, 15)), Complex(-9, -15))
     assert Complex(2, 3) - (2 + 2j) == Complex(0, 1)
     assert 3 - Complex(2, 1) == Complex(1, -1)
     self.assertNotEqual(Complex(3, 4) - 2, Complex(10, 2))
Пример #19
0
 def test_set_get(self):
     c = Complex()
     c.real = 10.0
     c.imaginary = 20.0
     self.assertEqual(10.0, c.real)
     self.assertEqual(20.0, c.imaginary)
Пример #20
0
 def test_mul(self):
     self.assertEqual(
         Complex(10, 5).__mul__(Complex(10, 5)), Complex(75, 100))
     self.assertEqual((Complex(10, 5) * Complex(10, 5)), Complex(75, 100))
     self.assertEqual((Complex(3, 25) * Complex(10, 5)), Complex(-95, 265))
     self.assertEqual(4 * Complex(10, 5), Complex(40, 20))
     self.assertNotEqual(4 * Complex(3, 4) - 2, Complex(10, 2))
     assert Complex(2, 3) * (2 + 2j) == Complex(-2, 10)
     assert 4 * (2 + 2j) == Complex(8, 8)
     assert (4 + 1j) * 3 == Complex(12, 3)
Пример #21
0
#!/usr/bin/env python

# Author: Makenzie Brian
# Date: February 20, 2018
# Class: ME 599
# File: lab6 > test.py
# Description: test for complex class

from complex import Complex

# MAIN
if __name__ == '__main__':
    # convenience because I didn't want to use the built in
    a = Complex(6, 3)
    b = Complex(7, -5)
    numb = 3
    print "A: ", a
    print "B: ", b
    print "Add: ", a + b
    print "Subtract: ", a - b,
    print "Mult: ", a * b
    print "Divide: ", a / b
    print "Negate: ", -a, -b
    print "Compl conj: ", ~a, ~b
    print "\n"
    print "Integer second with interger as " + str(numb)
    print "Add: ", a + numb
    print "Subtract: ", a - numb
    print "Mult: ", a * numb
    print "Divide: ", a / numb
    print "\n"
Пример #22
0
 def test_eq(self):
     self.assertEqual(Complex(1, 1).__eq__(Complex(1, 1)), Complex(1))
     self.assertEqual(Complex(1, 1) == (Complex(1, 1)), Complex(1))
     self.assertEqual(Complex(124, 112), Complex(124, 112))
     self.assertNotEqual((4 + 1j), Complex(124, 112))
Пример #23
0
def test_mod():
    """Test to make sure the modulus() function works.

    form:
        |z| = sqrt(a^2 + b^2)
        Where z=complex number, a=real, b=imaginary

    """
    complexNumber = Complex(2, 0)
    assert complexNumber.modulus() == 2, error

    complexNumber = Complex(4, 7)
    assert complexNumber.modulus() == sqrt(65), error

    complexNumber = Complex(3, 8)
    assert complexNumber.modulus() == sqrt(73), error

    complexNumber = Complex(-1, -3)
    assert complexNumber.modulus() == sqrt(10), error
Пример #24
0
 def test_modulus(self):
     self.assertEqual(Complex(3, 4).modulus(), 5)
     self.assertEqual(Complex(45, 24).modulus(), 51)
Пример #25
0
def test_add():
    """Test to make sure the __add__ function works.

    form:

        z1 + z2 = (a1 + a2) + (b1 + b2)i
        Where z=complex number, a=real, b=imaginary

    """
    complexNumber1 = Complex(2, 0)
    complexNumber2 = Complex(0, 1)
    assert (complexNumber1 + complexNumber2) == Complex(2, 1), error

    complexNumber1 = Complex(0, 0)
    complexNumber2 = Complex(1, 0)
    assert (complexNumber1 + complexNumber2) == Complex(1, 0), error

    complexNumber1 = Complex(-5, -1)
    complexNumber2 = Complex(4, 4)
    assert (complexNumber1 + complexNumber2) == Complex(-1, 3), error

    complexNumber1 = Complex(-1, 2)
    complexNumber2 = Complex(-1, 2)
    assert (complexNumber1 + complexNumber2) == Complex(-2, 4), error
Пример #26
0
 def test_conjugate(self):
     self.assertEqual(Complex(1, 3).conjugate(), Complex(1, -3))
     assert Complex(1, 3).conjugate() == Complex(1, -3)
Пример #27
0
def test_add():
    assert int(Complex(1, 0).real) == 1
    print('OK')
Пример #28
0
 def test_add(self):
     self.assertEqual(Complex(10, 5) + Complex(10, 5), Complex(20, 10))
     self.assertEqual((Complex(10, 5) + Complex(10, 5)), Complex(20, 10))
     self.assertEqual((Complex(214, 411) + Complex(31, 22)),
                      Complex(245, 433))
     assert Complex(214, 411) + Complex(31, 22) == Complex(245, 433)
     assert 3 + Complex(3, 1) == Complex(6, 1)
     assert 40 + Complex(31, 22) == Complex(71, 22)
     self.assertEqual(Complex(1, 2) + 3, Complex(4, 2))
     assert Complex(1, 3) + complex(1, 3) == Complex(2, 6)
     self.assertEqual(Complex(1, 3) + (1 + 3j), Complex(2, 6))
     self.assertEqual(Complex(2, 3) + (2 + 2j), Complex(4, 5))
     assert Complex(2, 3) + (2 + 2j) == Complex(4, 5)
Пример #29
0
 def __init__(self,
              factory,
              divide_data,
              point_data,
              transform_data=None,
              curve_types=None,
              curve_data=None,
              transfinite_data=None,
              transfinite_type=None,
              physical_name=None,
              inner_volumes=None,
              surfaces_names=None):
     """
     Primitive object divided into parts for boolean accuracy.
     :param str factory: see Primitive
     :param list of int divide_data: [n_parts_x, n_parts_y, n_parts_z]
     :param list point_data: see Primitive
     :param list of float transform_data: see Primitive
     :param list of int curve_types: see Primitive
     :param list curve_data: see Primitive
     :param list of list of float transfinite_data: see Primitive
     :param int transfinite_type: see Primitive
     :param str physical_name: see Primitive
     :param list of int inner_volumes: see Primitive
     :param list of str surfaces_names: see Primitive
     """
     primitives = list()
     if len(point_data) == 3:
         half_lx = point_data[0] / 2.0
         half_ly = point_data[1] / 2.0
         half_lz = point_data[2] / 2.0
         primitive_lc = None
         new_point_data = [[half_lx, half_ly, -half_lz],
                           [-half_lx, half_ly, -half_lz],
                           [-half_lx, -half_ly, -half_lz],
                           [half_lx, -half_ly, -half_lz],
                           [half_lx, half_ly, half_lz],
                           [-half_lx, half_ly, half_lz],
                           [-half_lx, -half_ly, half_lz],
                           [half_lx, -half_ly, half_lz]]
     elif len(point_data) == 4:
         half_lx = point_data[0] / 2.0
         half_ly = point_data[1] / 2.0
         half_lz = point_data[2] / 2.0
         primitive_lc = point_data[3]
         new_point_data = [[half_lx, half_ly, -half_lz],
                           [-half_lx, half_ly, -half_lz],
                           [-half_lx, -half_ly, -half_lz],
                           [half_lx, -half_ly, -half_lz],
                           [half_lx, half_ly, half_lz],
                           [-half_lx, half_ly, half_lz],
                           [-half_lx, -half_ly, half_lz],
                           [half_lx, -half_ly, half_lz]]
     else:
         primitive_lc = None
         new_point_data = [x[:3] for x in point_data]  # slice lc if exist
     if curve_data is None:
         curve_data = [[]] * 12
     if physical_name is None:
         physical_name = ComplexPrimitive.__name__
     ps_base_points, ps_curves_points = divide_primitive(
         divide_data, new_point_data, curve_data)
     for i, bps in enumerate(ps_base_points):
         if primitive_lc is not None:
             new_point_data = [
                 x + [primitive_lc] for x in ps_base_points[i]
             ]
         else:
             new_point_data = ps_base_points[i]
         new_curve_data = list()
         for cps in ps_curves_points[i]:
             if primitive_lc is not None:
                 new_curve_data.append([x + [primitive_lc] for x in cps])
             else:
                 new_curve_data.append(cps)
         primitives.append(
             Primitive(factory, new_point_data, transform_data, curve_types,
                       new_curve_data, transfinite_data, transfinite_type,
                       physical_name, inner_volumes, surfaces_names))
     Complex.__init__(self, factory, primitives)
Пример #30
0
#!/usr/bin/env python

import sys, random

sys.path.append("/home/pi/mcpi/api/python/mcpi")
import minecraft

from complex import Complex

BACKGROUND_BLOCK = 155
FOREGROUND_BLOCK = 49

GROUND = 50

ITERATIONS = 10
CONSTANT = Complex(1, 1)

scale = 100
resolution = 1.0 / scale

x_min = -2.5
x_max = 1
x_range = (x_max - x_min)

y_min = -1
y_max = 1
y_range = (y_max - y_min)

WIDTH = int(x_range * scale)
HEIGHT = int(y_range * scale)
Пример #31
0
    def test_multiply_all_negative(self):
        z = Complex(-2, -5)
        w = Complex(-3, -8)

        assert (z * w).__str__() == "-34+31i"
Пример #32
0
        if stage:
            count, _ = counter(clk, 0, m//2-1, 1, valid)
            s1 = s1 * twiddle_type.rom(count, *twiddles)
            s0 = delay(clk, s0, 1)
            s1 = delay(clk, s1, 1)
            valid = delay(clk, valid, 1)

            #reorder
            s0, s1, valid = reorder(clk, s0, s1, valid, stage)

    return bit_reverse_order(clk, s0, s1, valid, 2**(num_stages-1))


clk = Clock("clk")
base_type = SFixed(16, 8)
subtype = Complex(base_type)


a = subtype.input("in")
b = subtype.input("in")
valid = Boolean().input("valid")
s0, s1, valid_out = fft(clk, a, b, valid, 3)

test = [1, 0, 1, 0, 1, 0, 1, 0]

clk.initialise()
for i in range(10):
    for i in range(4):
        a.set(test[i]), b.set(test[i+4]), valid.set(1)
        print(("%10s %10s %10s"%(s0.get(), s1.get(), valid_out.get())))
        clk.tick()
Пример #33
0
    def test_subtract(self):
        c1 = Complex(-10, 3)
        c2 = Complex(1, -2)

        self.assertEqual(str(c1.subtract(c2)), "-11.00 + 5.00i", "Should equal '-9.00 + 7.00i'")
Пример #34
0
        temp = Complex(0, 0)
        for j in range(len(self.values)):
            temp = temp + (self.values[j] * other.values[j].sprz())
        return temp

    def norma(self):
        temp = Complex(0, 0)
        for j in range(len(self.values)):
            temp = temp + (self.values[j] * self.values[j].sprz())
        return temp**0.5

    def __repr__(self):
        return str(self.values)


a = Complex(1, 2)
b = Complex(3, 4)
c = Complex(5, 6)
d = Complex(0, 1)
e = Complex(1, 0)
f = Complex(2, 3)
al = 1 / math.sqrt(2)
vector1 = Vector([a, b, c])
vector2 = Vector([d, e, f])

# print(vector1)
# print(vector1 + vector2)
# print(vector1 - vector2)
# print(vector1.skalar(2))
# print(vector2.skalar(3))
# print(vector1 * vector2)
Пример #35
0
    def test_divide(self):
        c1 = Complex(1, 2)
        c2 = Complex(3, 4)

        self.assertEqual(str(c1.divide(c2)), "0.44 + 0.08i", "Should equal 0.44 + 0.08i")
Пример #36
0
 def __mul__(self, other):
     temp = Complex(0, 0)
     for j in range(len(self.values)):
         temp = temp + (self.values[j] * other.values[j].sprz())
     return temp
Пример #37
0
from complex import Complex

if __name__ == '__main__':
    """print(Complex(1, 2))
    print(Complex(0, 2))
    print(Complex(1, -2))
    print(Complex(0, -2))
    print(Complex(-1, -2))
    print(Complex(0, -999))"""

    c = Complex(1, -2)
    b = Complex(-2, -4)

    print c.multiply(b)
Пример #38
0
 def norma(self):
     temp = Complex(0, 0)
     for j in range(len(self.values)):
         temp = temp + (self.values[j] * self.values[j].sprz())
     return temp**0.5
Пример #39
0
 def test_conjugate_construction(self):
     c = Complex(real=15.0, imaginary=10.0)
     conjugate = c.get_conjugate()
     self.assertEqual(15.0, conjugate.real)
     self.assertEqual(-10.0, conjugate.imaginary)
Пример #40
0
 def __init__(self,
              ap_guts = [],
              **kw):
     # Call ancestor init with the remaining keywords
     Complex.__init__(self, **kw)
     self.ap_guts = ap_guts