Пример #1
0
def test_std():
    with pytest.raises(ValueError):
        utils.std([])

    vals = [random.normalvariate(0, 1) for i in range(1000)]
    assert utils.std(vals) - 1 < 0.1
    assert utils.std([1, 1, 1]) == 0
Пример #2
0
def test_std():
    with pytest.raises(ValueError):
        utils.std([])

    vals = [random.normalvariate(0, 1) for i in range(1000)]
    assert utils.std(vals) - 1 < 0.1
    assert utils.std([1, 1, 1]) == 0
Пример #3
0
def test_cv_combine():
    for i in range(10):
        values1 = [random.normalvariate(0, 1) for i in range(50)]
        values2 = [random.normalvariate(0, 1) for i in range(50)]
        values = values1 + values2
        cv = ContinuousValue()
        cv2 = ContinuousValue()

        cv.update_batch(values1)
        assert cv.biased_std() - utils.std(values1) < 0.00000000001

        cv2.update_batch(values2)
        assert cv2.biased_std() - utils.std(values2) < 0.00000000001

        cv.combine(cv2)
        assert cv.biased_std() - utils.std(values) < 0.00000000001
Пример #4
0
    def test_cv_combine(self):
        for i in range(10):
            values1 = [random.normalvariate(0, 1) for i in range(50)]
            values2 = [random.normalvariate(0, 1) for i in range(50)]
            values = values1 + values2
            cv = ContinuousValue()
            cv2 = ContinuousValue()

            cv.update_batch(values1)
            assert cv.biased_std() - utils.std(values1) < 0.00000000001

            cv2.update_batch(values2)
            assert cv2.biased_std() - utils.std(values2) < 0.00000000001

            cv.combine(cv2)
            assert cv.biased_std() - utils.std(values) < 0.00000000001
Пример #5
0
def test_cv_unbiased_std():
    for i in range(10):
        values = [random.normalvariate(0, 1) for i in range(10)]
        cv = ContinuousValue()
        cv.update_batch(values)
        assert (cv.unbiased_std() -
                ((len(values) * utils.std(values) /
                  (len(values) - 1)) / utils.c4(len(values))) < 0.00000000001)
Пример #6
0
def test_cv_unbiased_std():
    for i in range(10):
        values = [random.normalvariate(0, 1) for i in range(10)]
        cv = ContinuousValue()
        cv.update_batch(values)
        assert (cv.unbiased_std() -
                ((len(values) * utils.std(values) / (len(values) - 1)) /
                 utils.c4(len(values))) < 0.00000000001)
Пример #7
0
def test_cv_update():
    for i in range(10):
        values = []
        cv = ContinuousValue()
        for i in range(20):
            x = random.normalvariate(0, 1)
            values.append(x)
            cv.update(x)
            assert cv.biased_std() - utils.std(values) < 0.00000000001
Пример #8
0
 def test_cv_update(self):
     for i in range(10):
         values = []
         cv = ContinuousValue()
         for i in range(20):
             x = random.normalvariate(0, 1)
             values.append(x)
             cv.update(x)
             assert cv.biased_std() - utils.std(values) < 0.00000000001
Пример #9
0
def test_cv_std():
    for i in range(10):
        values = [random.normalvariate(0, 1) for i in range(100)]
        cv = ContinuousValue()
        cv.update_batch(values)
        assert cv.biased_std() - utils.std(values) < 0.00000000001
Пример #10
0
 def test_cv_std(self):
     for i in range(10):
         values = [random.normalvariate(0, 1) for i in range(100)]
         cv = ContinuousValue()
         cv.update_batch(values)
         assert cv.biased_std() - utils.std(values) < 0.00000000001