Пример #1
0
    def _state_to_condition(self, state):
        """Converts state to equality Conditions.

        This function takes a State object and converts it into
        a Conjunction condition (if >1 state factor), with each
        sub-condition being an equality condition over one of the state factors.
        NOTE: If there is only one state factor, an Equality condition is
        returned.

        Args:
            state: The state to convert

        Returns:
            cond: The condition
        """
        cond = ConjunctionCondition()

        for factor in self._state_factors:
            eq = EqualityCondition(self._state_factors[factor], state[factor])
            cond.add_cond(eq)

        if len(cond._cond_list) == 1:
            return cond._cond_list[0]

        return cond
def make_sink_state_transitions(start_node, state_factors, node_to_loc_sv):
    """
    Makes transitions related to traversing to sink state. 

    Args:
        start_node: The N object corresponding to the start location
        state_factors: A dictionary mapping from state factor names to state 
            factor objects
        node_to_loc_sv: A dictionary mapping from N objects to values for the 
            'location' state factor.

    Returns:
        A list of ProbTransition objects for transitions related to traversing 
        doorways
    """
    # Add a finish action to when completed task
    finish_precond = \
        ConjunctionCondition(
            EqualityCondition(state_factors['location'], node_to_loc_sv[start_node]),
            EqualityCondition(state_factors['num_people_found'], NUM_PEOPLE),
        )
    finish_action_name = 'finish'
    finish_prob_postconds = {
        EqualityCondition(state_factors['location'], -1): 1.0
    }

    finish_transition = ProbTransition(pre_cond=finish_precond,
                                       action_name=finish_action_name,
                                       prob_post_conds=finish_prob_postconds)

    # Also add a run_out_of_time action when have run out of time
    no_time_precond = ConjunctionCondition(
        GreaterThanCondition(state_factors['time'], TIME_HORIZON - 1),
        GreaterThanCondition(state_factors['location'], -1),
    )
    no_time_action_name = 'run_out_of_time'
    no_time_prob_postconds = {
        EqualityCondition(state_factors['location'], -1): 1.0
    }

    no_time_transition = ProbTransition(pre_cond=no_time_precond,
                                        action_name=no_time_action_name,
                                        prob_post_conds=no_time_prob_postconds)

    return [finish_transition, no_time_transition]
def add_rubble_clear_costs(cost, room_info, state_factors, node_to_loc_sv):
    """
    Add costs associated with clearing rubble to 'cost'

    Args:
        cost: The StateActionCost object for the SSP
        room_info: A list of tuples (doorway_edge, person_factor, rubble_factor) 
            where 'doorway_edge' is an edge that may be blocked by rubble, 
            'person_factor' corresponds to a state factor 'room_i_person' for 
            some i and similarly 'rubble_factor' corresponds to a state factor 
            'room_i_rubble'
        state_factors: A dictionary mapping from state factor names to state 
            factor objects
        node_to_loc_sv: A dictionary mapping from N objects to values for the 
            'location' state factor.

    Returns:
        Nothing
    """
    for edge, _, rubble_factor in room_info:
        pre_cond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[edge.n1]),
                EqualityCondition(rubble_factor, 'small_pile'),
            )
        action_name = 'clear_rubble'
        cost_value = SMALL_RUBBLE_PILE_CLEARING_TIME_COST
        cost.append(pre_cond=pre_cond,
                    action_name=action_name,
                    cost_value=cost_value)
        pre_cond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[edge.n1]),
                EqualityCondition(rubble_factor, 'large_pile'),
            )
        action_name = 'clear_rubble'
        cost_value = LARGE_RUBBLE_PILE_CLEARING_TIME_COST
        cost.append(pre_cond=pre_cond,
                    action_name=action_name,
                    cost_value=cost_value)
Пример #4
0
    def to_ssp(self, add_time=False):
        """
        Returns an MDP for the deep sea treasure environment
        """
        # Three state variable, where we are, and the time
        xloc_sf = IntegerStateFactor(name='x', min=-2, max=self.num_cols)
        yloc_sf = IntegerStateFactor(name='y', min=-1, max=self.num_rows)
        if add_time:
            time_sf = IntegerStateFactor(name='t', min=0, max=self.max_steps)

        # Time progression post cond
        if add_time:
            time_prog_post_cond = CumulativeCondition(time_sf, value=1)

        # Conditions for being "in" a column (not at the top or bottom)
        in_col_conditions = []
        not_at_top_cond = GreaterThanCondition(yloc_sf, value=0)
        for col in range(self.num_cols):
            x_cond = EqualityCondition(xloc_sf, value=col)
            not_at_bottom_cond = LessThanCondition(yloc_sf, value=self.depths[col])
            col_cond = ConjunctionCondition(x_cond, not_at_top_cond, not_at_bottom_cond)
            in_col_conditions.append(col_cond)

        # Condition for being able to move in any direction
        free_space_cond = DisjunctionCondition(*(in_col_conditions[1:-1]))
        
        # Condition for being in the corners
        x_cond = EqualityCondition(xloc_sf, value=0)
        y_cond = EqualityCondition(yloc_sf, value=0)
        top_left_cond = ConjunctionCondition(x_cond, y_cond)
        
        x_cond = EqualityCondition(xloc_sf, value=self.num_cols-1)
        y_cond = EqualityCondition(yloc_sf, value=0)
        top_right_cond = ConjunctionCondition(x_cond, y_cond)

        # Condition for being in the top row
        x_gr_cond = GreaterThanCondition(xloc_sf, value=0)
        x_le_cond = LessThanCondition(xloc_sf, value=self.num_cols-1)
        y_cond = EqualityCondition(yloc_sf, value=0)
        top_row_cond = ConjunctionCondition(x_gr_cond, x_le_cond, y_cond)

        # Condition for being in any one of the treasure locations
        treasure_loc_conditions = []
        for col in range(self.num_cols):
            x_cond = EqualityCondition(xloc_sf, value=col)
            y_cond = EqualityCondition(yloc_sf, value=self.depths[col])
            at_treasure_loc_cond = ConjunctionCondition(x_cond, y_cond)
            treasure_loc_conditions.append(at_treasure_loc_cond)
        
        any_treasure_loc_cond = DisjunctionCondition(*treasure_loc_conditions)

        # Define the post conditions for moving
        left_cum_cond = CumulativeCondition(xloc_sf, value=-1)
        right_cum_cond = CumulativeCondition(xloc_sf, value=1)
        up_cum_cond = CumulativeCondition(yloc_sf, value=-1)
        down_cum_cond = CumulativeCondition(yloc_sf, value=1)

        same_cum_condx = CumulativeCondition(xloc_sf, value=0)
        same_cum_condy = CumulativeCondition(yloc_sf, value=0)
            
        if add_time:
            left_cum_cond = ConjunctionCondition(
                left_cum_cond,
                time_prog_post_cond)
            right_cum_cond = ConjunctionCondition(
                right_cum_cond,
                time_prog_post_cond)
            up_cum_cond = ConjunctionCondition(
                up_cum_cond,
                time_prog_post_cond)
            down_cum_cond = ConjunctionCondition(
                down_cum_cond,
                time_prog_post_cond)

            same_cum_condx = ConjunctionCondition(
                same_cum_condx,
                time_prog_post_cond)
            same_cum_condy = ConjunctionCondition(
                same_cum_condy,
                time_prog_post_cond)
            

        # Post cond for finishing
        x_cond = EqualityCondition(xloc_sf, value=-1)
        y_cond = EqualityCondition(yloc_sf, value=-1)
        finished_post_cond = ConjunctionCondition(x_cond, y_cond)

        transitions = []
        
        # add transitions for free space (move in all directions)
        can_move_any_cond = free_space_cond
        if add_time:
            can_move_any_cond = ConjunctionCondition(
                can_move_any_cond, 
                LessThanCondition(time_sf, value=self.max_steps))
        self._add_transitions(transitions=transitions, 
                              pre_cond=can_move_any_cond, 
                              move_left_result_cond=left_cum_cond, 
                              move_right_result_cond=right_cum_cond, 
                              move_up_result_cond=up_cum_cond, 
                              move_down_result_cond=down_cum_cond)
        
        # add transitions for left col (cant move left)
        cant_move_left_cond = in_col_conditions[0]
        if add_time:
            cant_move_left_cond = ConjunctionCondition(
                cant_move_left_cond, 
                LessThanCondition(time_sf, value=self.max_steps))
        self._add_transitions(transitions=transitions, 
                              pre_cond=cant_move_left_cond, 
                              move_left_result_cond=same_cum_condx, 
                              move_right_result_cond=right_cum_cond, 
                              move_up_result_cond=up_cum_cond, 
                              move_down_result_cond=down_cum_cond)
        
        # add transitions for right col (cant move right)
        cant_move_right_cond = in_col_conditions[-1]
        if add_time:
            cant_move_right_cond = ConjunctionCondition(
                cant_move_right_cond, 
                LessThanCondition(time_sf, value=self.max_steps))
        self._add_transitions(transitions=transitions, 
                              pre_cond=cant_move_right_cond, 
                              move_left_result_cond=left_cum_cond, 
                              move_right_result_cond=same_cum_condx, 
                              move_up_result_cond=up_cum_cond, 
                              move_down_result_cond=down_cum_cond)
        
        # add transitions for top row (cant move up)
        cant_move_up_cond = top_row_cond
        if add_time:
            cant_move_up_cond = ConjunctionCondition(
                cant_move_up_cond, 
                LessThanCondition(time_sf, value=self.max_steps))
        self._add_transitions(transitions=transitions, 
                              pre_cond=cant_move_up_cond, 
                              move_left_result_cond=left_cum_cond, 
                              move_right_result_cond=right_cum_cond, 
                              move_up_result_cond=same_cum_condy, 
                              move_down_result_cond=down_cum_cond)
        
        # add transitions for top left cornder (cant move up or left)
        cant_move_up_or_left_cond = top_left_cond
        if add_time:
            cant_move_up_or_left_cond = ConjunctionCondition(
                cant_move_up_or_left_cond, 
                LessThanCondition(time_sf, value=self.max_steps))
        self._add_transitions(transitions=transitions, 
                              pre_cond=cant_move_up_or_left_cond, 
                              move_left_result_cond=same_cum_condx, 
                              move_right_result_cond=right_cum_cond, 
                              move_up_result_cond=same_cum_condy, 
                              move_down_result_cond=down_cum_cond)
        
        # add transitions for top row (cant move up)
        cant_move_up_or_right_cond = top_right_cond
        if add_time:
            cant_move_up_or_right_cond = ConjunctionCondition(
                cant_move_up_or_right_cond, 
                LessThanCondition(time_sf, value=self.max_steps))
        self._add_transitions(transitions=transitions, 
                              pre_cond=cant_move_up_or_right_cond, 
                              move_left_result_cond=left_cum_cond, 
                              move_right_result_cond=same_cum_condx, 
                              move_up_result_cond=same_cum_condy, 
                              move_down_result_cond=down_cum_cond)

        # Add a transition for collecting a treasure
        collect_treasure_trans = ProbTransition(
            action_name="collect_bounty",
            pre_cond=any_treasure_loc_cond,
            prob_post_conds={finished_post_cond: 1.0},
        )
        transitions.append(collect_treasure_trans)

        # Add a reward for the treasure
        sar_tuples = []
        for col in range(self.num_cols):
            pre_cond = EqualityCondition(xloc_sf, value=col)
            action = "collect_bounty"
            reward_value = -self.treasure[col] * self.treasure_reward_scale
            sar_tuples.append((pre_cond, action, reward_value))

        treasure_cost = StateActionCost(
            sac_tuples=sar_tuples)

        # Add a reward for number of steps taken + if we have a positive reward 
        # for reaching the treasure, add that
        sar_tuples = [(None,  "left", self.distance_reward_scale),
                      (None, "right", self.distance_reward_scale),
                      (None,    "up", self.distance_reward_scale),
                      (None,  "down", self.distance_reward_scale),]
        distance_cost = StateActionCost(
            sac_tuples=sar_tuples)

        # Make the initial state distributions
        if add_time:
            init_state = State({'x': 0, 'y': 0, 't': 0})
        else: 
            init_state = State({'x': 0, 'y': 0})
        init_state_distr = {init_state: 1.0}
                                            
        # Make and return the MDP
        state_factors = {'x': xloc_sf, 'y': yloc_sf}
        if add_time:
            state_factors['t'] = time_sf
        return SSP(state_factors=state_factors,
                   initial_state_probs=init_state_distr,
                   transitions=transitions,
                   costs=[distance_cost, treasure_cost],                   
                   bypass_sanity_checks=True)
def make_search_and_rescue_ssp(use_real_map=True):
    """
    Returns a SSP that encapsulates a search and rescue mission
    """
    # Read in topologcial map from ROS topic/spoof function
    if use_real_map:
        node_to_loc_sv, _, topological_edges = read_in_topo_map()
    else:
        node_to_loc_sv, _, topological_edges = build_spoof_topo_map()

    # Give sensible names to each node for building the SSP
    # Rooms are labelled in a CLOCKWISE order, with rooms 1 and 2 being closest
    # to the robots starting position. If this is confusing try draw it out :)
    loc_sv_to_node = {
        node_to_loc_sv[k]: k
        for k in list(node_to_loc_sv.keys())
    }

    start_node = loc_sv_to_node[0]
    outside_room_1_node = loc_sv_to_node[1]
    room_1_node = loc_sv_to_node[2]
    outside_room_2_node = loc_sv_to_node[3]
    room_2_node = loc_sv_to_node[4]
    outside_room_3_node = loc_sv_to_node[5]
    room_3_node = loc_sv_to_node[6]
    outside_room_4_node = loc_sv_to_node[7]
    room_4_node = loc_sv_to_node[8]

    # Similarly give sensible names to each of the edges
    start_to_room_1_edge = topological_edges[0]
    start_to_room_2_edge = topological_edges[1]

    room_1_to_room_2_edge = topological_edges[2]
    room_1_to_room_3_edge = topological_edges[3]
    room_1_to_room_4_edge = topological_edges[4]
    room_2_to_room_3_edge = topological_edges[5]
    room_2_to_room_4_edge = topological_edges[6]
    room_3_to_room_4_edge = topological_edges[7]

    room_1_doorway_edge = topological_edges[8]
    room_2_doorway_edge = topological_edges[9]
    room_3_doorway_edge = topological_edges[10]
    room_4_doorway_edge = topological_edges[11]

    tunnel_edge = topological_edges[12]

    # Build state factors
    state_factors = make_search_and_rescue_state_factors(topological_edges)

    # Create the initial state
    initial_state_values = {
        'location': 0,
        'time': 0,
        'num_people_found': 0,
        'num_rooms_searched': 0,
        'room_1_person': 'unknown',
        'room_2_person': 'unknown',
        'room_3_person': 'unknown',
        'room_4_person': 'unknown',
        'room_1_rubble': 'unknown',
        'room_2_rubble': 'unknown',
        'room_3_rubble': 'unknown',
        'room_4_rubble': 'unknown',
    }

    initial_state = State(initial_state_values)

    # Defining transitions - traversal excluding doorways
    transitions = []

    non_doorway_edges = [
        start_to_room_1_edge,
        start_to_room_2_edge,
        room_1_to_room_2_edge,
        room_1_to_room_3_edge,
        room_1_to_room_4_edge,
        room_2_to_room_3_edge,
        room_2_to_room_4_edge,
        room_3_to_room_4_edge,
        tunnel_edge,
    ]

    non_doorway_traversal_transitions = \
        make_non_doorway_traversal_transitions(non_doorway_edges, state_factors, node_to_loc_sv)
    transitions.extend(non_doorway_traversal_transitions)

    # Defining transitions - rubble observations
    room_info = [
        (room_1_doorway_edge, state_factors['room_1_person'],
         state_factors['room_1_rubble']),
        (room_2_doorway_edge, state_factors['room_2_person'],
         state_factors['room_2_rubble']),
        (room_3_doorway_edge, state_factors['room_3_person'],
         state_factors['room_3_rubble']),
        (room_4_doorway_edge, state_factors['room_4_person'],
         state_factors['room_4_rubble']),
    ]

    rubble_transitions = make_rubble_transitions(room_info, state_factors,
                                                 node_to_loc_sv)
    transitions.extend(rubble_transitions)

    # Defining transitions - doorway traversal + checking for people
    doorway_transitions = make_doorway_transitions(room_info, state_factors,
                                                   node_to_loc_sv)
    transitions.extend(doorway_transitions)
    people_transitions = make_check_for_person_transitions(
        room_info, state_factors, node_to_loc_sv)
    transitions.extend(people_transitions)

    # Defining transitions - enforcing the time horizon
    # To make all states over the time horizon sink states, we need to add the
    # pre condition that the time is below the horizon. This means any state
    # with time having surpassed the time horizon will have zero enabled actions
    for transition in transitions:
        transition.pre_cond = ConjunctionCondition(
            transition.pre_cond,
            LessThanCondition(state_factors['time'], TIME_HORIZON),
        )

    # Defining transitions - sink state
    sink_transitions = make_sink_state_transitions(start_node, state_factors,
                                                   node_to_loc_sv)
    transitions.extend(sink_transitions)

    # Defining costs - travel cost
    cost = StateActionCost()
    add_traversal_costs(cost, topological_edges, state_factors, node_to_loc_sv)
    add_rubble_clear_costs(cost, room_info, state_factors, node_to_loc_sv)
    add_not_finishing_cost(cost, topological_edges, state_factors)

    # Finally, make and return the SSP object
    return SSP(state_factors=state_factors,
               initial_state_probs={initial_state: 1.0},
               transitions=transitions,
               costs=[cost],
               index_factors_names=['location', 'num_people_found'],
               bypass_sanity_checks=True)
def make_doorway_transitions(room_info, state_factors, node_to_loc_sv):
    """
    Makes transitions related to traversing through doorways. We need to model 
    that the robot cannot traverse through a doorway without knowing that it 
    is clear

    Args:
        room_info: A list of tuples (doorway_edge, person_factor, rubble_factor) 
            where 'doorway_edge' is an edge that may be blocked by rubble, 
            'person_factor' corresponds to a state factor 'room_i_person' for 
            some i and similarly 'rubble_factor' corresponds to a state factor 
            'room_i_rubble'
        state_factors: A dictionary mapping from state factor names to state 
            factor objects
        node_to_loc_sv: A dictionary mapping from N objects to values for the 
            'location' state factor.

    Returns:
        A list of ProbTransition objects for transitions related to traversing 
        doorways
    """
    transitions = []

    for doorway_edge, person_factor, rubble_factor in room_info:
        time_cost = math.ceil(doorway_edge.length() *
                              EDGE_TIME_COST_TO_LEN_RATIO)
        # moving into room
        forward_precond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n1]),
                EqualityCondition(rubble_factor, 'cleared'),
            )
        forward_action_name = doorway_edge.n2.name
        forward_prob_postconds = {
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n2]),
                CumulativeCondition(state_factors['time'], time_cost)):
            1.0
        }
        forward_transition = ProbTransition(
            pre_cond=forward_precond,
            action_name=forward_action_name,
            prob_post_conds=forward_prob_postconds)
        transitions.append(forward_transition)

        # moving out of room
        backward_precond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n2]),
                EqualityCondition(rubble_factor, 'cleared'),
            )
        backward_action_name = doorway_edge.n1.name
        backward_prob_postconds = {
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n1]),
                CumulativeCondition(state_factors['time'], time_cost)):
            1.0
        }
        backward_transition = ProbTransition(
            pre_cond=backward_precond,
            action_name=backward_action_name,
            prob_post_conds=backward_prob_postconds)
        transitions.append(backward_transition)

    return transitions
def make_rubble_transitions(room_info, state_factors, node_to_loc_sv):
    """
    Makes transitions related to observing and clearing rubble in doorways

    Args:
        room_info: A list of tuples (doorway_edge, person_factor, rubble_factor) 
            where 'doorway_edge' is an edge that may be blocked by rubble, 
            'person_factor' corresponds to a state factor 'room_i_person' for 
            some i and similarly 'rubble_factor' corresponds to a state factor 
            'room_i_rubble'
        state_factors: A dictionary mapping from state factor names to state 
            factor objects
        node_to_loc_sv: A dictionary mapping from N objects to values for the 
            'location' state factor.

    Returns:
        A list of ProbTransition objects for transitions related to observing 
        and clearing rubble
    """
    transitions = []

    for doorway_edge, _, rubble_factor in room_info:
        # observing what rubble there is
        observe_rubble_precond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n1]),
                EqualityCondition(rubble_factor, 'unknown'),
            )
        observe_rubble_action_name = 'check_for_rubble'
        observe_rubble_prob_postconds = {
            EqualityCondition(rubble_factor, 'cleared'):
            RUBBLE_PILE_CLEAR_PROB,
            EqualityCondition(rubble_factor, 'small_pile'):
            (1.0 - RUBBLE_PILE_CLEAR_PROB - LARGE_RUBBLE_PILE_PROB),
            EqualityCondition(rubble_factor, 'large_pile'):
            LARGE_RUBBLE_PILE_PROB,
        }
        observe_rubble_transition = ProbTransition(
            pre_cond=observe_rubble_precond,
            action_name=observe_rubble_action_name,
            prob_post_conds=observe_rubble_prob_postconds)
        transitions.append(observe_rubble_transition)

        # clearing large rubble
        clear_rubble_precond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n1]),
                EqualityCondition(rubble_factor, 'large_pile'),
            )
        clear_rubble_action_name = 'clear_rubble'
        clear_rubble_prob_postconds = {
            ConjunctionCondition(
                EqualityCondition(rubble_factor, 'cleared'),
                CumulativeCondition(state_factors['time'], LARGE_RUBBLE_PILE_CLEARING_TIME_COST)):
            1.0,
        }
        clear_rubble_transition = ProbTransition(
            pre_cond=clear_rubble_precond,
            action_name=clear_rubble_action_name,
            prob_post_conds=clear_rubble_prob_postconds)
        transitions.append(clear_rubble_transition)

        # clearing small rubble
        clear_rubble_precond = \
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[doorway_edge.n1]),
                EqualityCondition(rubble_factor, 'small_pile'),
            )
        clear_rubble_action_name = 'clear_rubble'
        clear_rubble_prob_postconds = {
            ConjunctionCondition(
                EqualityCondition(rubble_factor, 'cleared'),
                CumulativeCondition(state_factors['time'], SMALL_RUBBLE_PILE_CLEARING_TIME_COST)):
            1.0,
        }
        clear_rubble_transition = ProbTransition(
            pre_cond=clear_rubble_precond,
            action_name=clear_rubble_action_name,
            prob_post_conds=clear_rubble_prob_postconds)
        transitions.append(clear_rubble_transition)

    return transitions
def make_non_doorway_traversal_transitions(edges, state_factors,
                                           node_to_loc_sv):
    """
    Make ProbTransition objects for traversing edges in 'edges'. We assume that 
    there is no restrictions on being able to traverse these edges, and that 
    they are bidirectional.

    Args:
        edges: A list of E objects to make traversal transitions for
        state_factors: A dictionary mapping from state factor names to state 
            factor objects
        node_to_loc_sv: A dictionary mapping from N objects to values for the 
            'location' state factor.

    Returns:
        A list of ProbTransition objects for traversal around the map
    """
    transitions = []

    for edge in edges:
        forward_precond = EqualityCondition(state_factors['location'],
                                            node_to_loc_sv[edge.n1])
        forward_action_name = edge.n2.name
        forward_prob_postconds = {
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[edge.n2]),
                CumulativeCondition(
                    state_factors['time'],
                    math.ceil(edge.length() * EDGE_TIME_COST_TO_LEN_RATIO))):
            1.0
        }

        backward_precond = EqualityCondition(state_factors['location'],
                                             node_to_loc_sv[edge.n2])
        backward_action_name = edge.n1.name
        backward_prob_postconds = {
            EqualityCondition(state_factors['location'], node_to_loc_sv[edge.n1]):
            1.0
        }
        backward_prob_postconds = {
            ConjunctionCondition(
                EqualityCondition(state_factors['location'], node_to_loc_sv[edge.n1]),
                CumulativeCondition(
                    state_factors['time'],
                    math.ceil(edge.length() * EDGE_TIME_COST_TO_LEN_RATIO))):
            1.0
        }

        forward_transition = ProbTransition(
            pre_cond=forward_precond,
            action_name=forward_action_name,
            prob_post_conds=forward_prob_postconds)
        backward_transition = ProbTransition(
            pre_cond=backward_precond,
            action_name=backward_action_name,
            prob_post_conds=backward_prob_postconds)

        transitions.append(forward_transition)
        transitions.append(backward_transition)

    return transitions