def test(): opt = TrainingOpt() config = GetConfig(opt.config_name) hm = Heatmapper(config) heatmap_test = np.load("heatmap_test.npz") img = heatmap_test['img'] joints = heatmap_test['joints'] mask_all = heatmap_test['mask_all'] mask_miss = heatmap_test['mask_miss'] plt.imshow(img[:, :, [2, 0, 1]]) plt.show() plt.imshow(mask_all) plt.show() plt.imshow(mask_miss) plt.show() labels = hm.create_heatmaps(joints, mask_all) print()
"If the norm of the gradient vector exceeds this, re-normalize it to have the norm equal to max_grad_norm" ) parser.add_argument('--output', type=str, default='result.jpg', help='output image') parser.add_argument('--opt-level', type=str, default='O1') parser.add_argument('--keep-batchnorm-fp32', type=str, default=None) parser.add_argument('--loss-scale', type=str, default=None) parser.add_argument('--run_refactor', action='store_true') parser.add_argument('--run_cpp', action='store_true') args = parser.parse_args() # ################################### Setup for some configurations ########################################### opt = TrainingOpt() config = GetConfig(opt.config_name) joint2limb_pairs = config.limbs_conn # > 30 dt_gt_mapping = config.dt_gt_mapping NUM_KEYPOINTS = 18 NUM_COCO_KEYPOINTS = 17 NUM_TEST_IMG = -1 TEST_SET = 'val2017' # ###################################### For evaluating time ###################################### def process(input_image_path, model, test_cfg, model_cfg, heat_layers, paf_layers): ori_img = cv2.imread(input_image_path)