def get_config(config_size): config_size = config_size.lower() if config_size == 'small': return c.SmallConfig() elif config_size == 'medium': return c.MediumConfig() elif config_size == 'large': return c.LargeConfig() else: raise ValueError('Unknown config size {} (small, medium, large)'.format(config_size))
def DataTests(): model_config = config.MediumConfig() train_data = PTB_DATA() train_data.load_data(config.TRAIN_FILENAME, model_config.batch_size) total_batch = int((train_data.batch_len - 1)/model_config.num_steps) shape = (model_config.batch_size, model_config.num_steps) for epoch in range(2): for batch in range(total_batch): batch_X, batch_Y = train_data.generate_batch(model_config.batch_size, model_config.num_steps, batch) print("batch:", batch) assert batch_X.shape == shape assert batch_Y.shape == shape
@author: rahul.ghosh """ import os os.environ["CUDA_VISIBLE_DEVICES"] = "1" import data import model import config import tensorflow as tf if __name__ == "__main__": with tf.Graph().as_default(): # LOAD CONFIG model_config = config.MediumConfig() eval_config = config.MediumConfig() gen_config = config.SmallGenConfig() eval_config.batch_size = 1 eval_config.num_steps = 1 # READ DATA train_data = data.PTB_DATA() train_data.load_data(config.TRAIN_FILENAME, model_config.batch_size) # valid_data = data.PTB_DATA() # valid_data.load_data(config.VALIDATION_FILENAME, model_config.batch_size) test_data = data.PTB_DATA() test_data.load_data(config.TEST_FILENAME, eval_config.batch_size) # BUILD MODEL initializer = tf.random_uniform_initializer(-model_config.init_scale, model_config.init_scale) with tf.name_scope("Train"):