Пример #1
0
# This Python program is based on features added in Python 3.5. Python 3.7 is recommanded.
# Requires Pillow >= 6.0.0 for ImageOps.exif_transpose() in utils.py
from PIL import Image
import math
from os import walk, listdir
from os.path import isfile, join
import config
from image import is_animated, rotate, combineImages
from video import animate, getFps, avgFps

# Load configuration
args = config.args()
userconf = config.user(args.config)
CONFIG = config.general(args, userconf)
CANVAS_ATT = config.canvas(args, userconf)
FFMPEG = config.ffmpeg(args, userconf)

# Walk in subdirectories (jour 1, jour 2, ...)
for root, dirs, _ in walk(CONFIG["ROOT_DIR"]):
    print("dirs in root: " + str(dirs))  # Debug

    # For each subdir
    for subdir in dirs:
        dir = join(root, subdir)
        print("current subdir: " + str(dir))  # Debug

        # Read all the files in the dir & keep only images
        images = []
        for file in listdir(dir):
            file = join(dir, file)
            try:
import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn.functional as F
import config
from torchvision import transforms

from model import SiameseNetwork
from utils import SiameseNetworkDataset, imshow

opt = config.args()
folder_dataset_test = torchvision.datasets.ImageFolder(root=opt.testing_dir)
# 定义图像dataset
transform_test = transforms.Compose([transforms.Resize((100, 100)),
                                     transforms.ToTensor()])
siamese_dataset_test = SiameseNetworkDataset(imageFolderDataset=folder_dataset_test,
                                             transform=transform_test,
                                             should_invert=False)

# 定义图像dataloader
test_dataloader = DataLoader(siamese_dataset_test,
                             shuffle=True,
                             batch_size=1)

net = SiameseNetwork().cuda()
net.load_state_dict(torch.load('checkpoint/siameseNet49.pth'))
# 生成对比图像
dataiter = iter(test_dataloader)
x0, _, _ = next(dataiter)

for i in range(10):
Пример #3
0
        if best_eval['loss'] == 0 or f1 > best_eval['f1']:
            best_eval['loss'] = epoch_loss
            best_eval['acc'] = acc
            best_eval['precision'] = precision
            best_eval['recall'] = recall
            best_eval['f1'] = f1
            torch.save(bert_crf_tagger,
                       f'{paras.log_save_path}/{paras.model_save_name}')

            with open(f'{paras.log_save_path}/checkpoint.log', 'w') as wf:
                wf.write(
                    f'Save time: {time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())}\n'
                )
                wf.write(f'Best F1-score: {best_eval["f1"]:.4f}\n')
                wf.write(f'Best Precision: {best_eval["precision"]:.4f}\n')
                wf.write(f'Best Recall: {best_eval["recall"]:.4f}\n')
                wf.write(f'Best Accuracy: {best_eval["acc"]:.4f}\n')
                wf.write(f'Best Loss: {best_eval["loss"]:.4f}\n')

            logger.info(
                f'Updated model, best F1-score: {best_eval["f1"]:.4f}\n')


if __name__ == '__main__':

    args = args()

    set_seed(args.seed)

    main(args)