def main(): """Make reports.""" parallel, run_func, _ = parallel_func(run_report, n_jobs=config.get_n_jobs()) logs = parallel( run_func( cfg=get_config(subject=subject), subject=subject, session=session) for subject, session in itertools.product(config.get_subjects(), config.get_sessions())) config.save_logs(logs) sessions = config.get_sessions() if not sessions: sessions = [None] if (config.get_task() is not None and config.get_task().lower() == 'rest'): msg = ' … skipping "average" report for "rest" task.' logger.info(**gen_log_kwargs(message=msg)) return for session in sessions: run_report_average(cfg=get_config(subject='average'), subject='average', session=session)
def average_evokeds(session): # Container for all conditions: all_evokeds = defaultdict(list) for subject in config.get_subjects(): fname_in = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, suffix='ave', extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) msg = f'Input: {fname_in}' logger.info( gen_log_message(message=msg, step=9, subject=subject, session=session)) evokeds = mne.read_evokeds(fname_in) for idx, evoked in enumerate(evokeds): all_evokeds[idx].append(evoked) # Insert into the container for idx, evokeds in all_evokeds.items(): all_evokeds[idx] = mne.grand_average( evokeds, interpolate_bads=config.interpolate_bads_grand_average ) # Combine subjects subject = 'average' fname_out = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space, suffix='ave', extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) if not fname_out.fpath.parent.exists(): os.makedirs(fname_out.fpath.parent) msg = f'Saving grand-averaged evoked sensor data: {fname_out}' logger.info( gen_log_message(message=msg, step=9, subject=subject, session=session)) mne.write_evokeds(fname_out, list(all_evokeds.values())) return list(all_evokeds.values())
def run_forward(subject, session=None): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space) fname_evoked = op.join(deriv_path, bids_basename + '-ave.fif') fname_trans = op.join(deriv_path, 'sub-{}'.format(subject) + '-trans.fif') fname_fwd = op.join(deriv_path, bids_basename + '-fwd.fif') msg = f'Input: {fname_evoked}, Output: {fname_fwd}' logger.info(gen_log_message(message=msg, step=10, subject=subject, session=session)) # Find the raw data file # XXX : maybe simplify bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=config.get_runs()[0], processing=config.proc, recording=config.rec, space=config.space) trans = get_head_mri_trans(bids_basename=bids_basename, bids_root=config.bids_root) mne.write_trans(fname_trans, trans) src = mne.setup_source_space(subject, spacing=config.spacing, subjects_dir=config.get_fs_subjects_dir(), add_dist=False) evoked = mne.read_evokeds(fname_evoked, condition=0) # Here we only use 3-layers BEM only if EEG is available. if 'eeg' in config.ch_types: model = mne.make_bem_model(subject, ico=4, conductivity=(0.3, 0.006, 0.3), subjects_dir=config.get_fs_subjects_dir()) else: model = mne.make_bem_model(subject, ico=4, conductivity=(0.3,), subjects_dir=config.get_fs_subjects_dir()) bem = mne.make_bem_solution(model) fwd = mne.make_forward_solution(evoked.info, trans, src, bem, mindist=config.mindist) mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
def run_ssp(subject, session=None): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) # compute SSP on first run of raw run = config.get_runs()[0] bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=run, processing=config.proc, recording=config.rec, space=config.space) # Prepare a name to save the data raw_fname_in = op.join(deriv_path, bids_basename + '_filt_raw.fif') # when saving proj, use bids_basename=None bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space) proj_fname_out = op.join(deriv_path, bids_basename + '_ssp-proj.fif') msg = f'Input: {raw_fname_in}, Output: {proj_fname_out}' logger.info( gen_log_message(message=msg, step=4, subject=subject, session=session)) raw = mne.io.read_raw_fif(raw_fname_in) # XXX : n_xxx should be options in config msg = 'Computing SSPs for ECG' logger.debug( gen_log_message(message=msg, step=4, subject=subject, session=session)) ecg_projs, ecg_events = \ compute_proj_ecg(raw, n_grad=1, n_mag=1, n_eeg=0, average=True) msg = 'Computing SSPs for EOG' logger.debug( gen_log_message(message=msg, step=4, subject=subject, session=session)) eog_projs, eog_events = \ compute_proj_eog(raw, n_grad=1, n_mag=1, n_eeg=1, average=True) mne.write_proj(proj_fname_out, eog_projs + ecg_projs)
def get_config( subject: Optional[str] = None, session: Optional[str] = None ) -> BunchConst: cfg = BunchConst( subjects=config.get_subjects(), task=config.get_task(), datatype=config.get_datatype(), acq=config.acq, rec=config.rec, space=config.space, proc=config.proc, deriv_root=config.get_deriv_root(), conditions=config.conditions, contrasts=config.contrasts, decode=config.decode, decoding_metric=config.decoding_metric, decoding_n_splits=config.decoding_n_splits, random_state=config.random_state, n_boot=config.n_boot, analyze_channels=config.analyze_channels, interpolate_bads_grand_average=config.interpolate_bads_grand_average, ch_types=config.ch_types, eeg_reference=config.get_eeg_reference(), interactive=config.interactive ) return cfg
def main(): """Run group average in source space""" msg = 'Running Step 13: Grand-average source estimates' logger.info(gen_log_message(step=13, message=msg)) if not config.run_source_estimation: msg = ' … skipping: run_source_estimation is set to False.' logger.info(gen_log_message(step=13, message=msg)) return mne.datasets.fetch_fsaverage(subjects_dir=config.get_fs_subjects_dir()) parallel, run_func, _ = parallel_func(morph_stc, n_jobs=config.N_JOBS) all_morphed_stcs = parallel(run_func(subject, session) for subject, session in itertools.product(config.get_subjects(), config.get_sessions())) all_morphed_stcs = [morphed_stcs for morphed_stcs, subject in zip(all_morphed_stcs, config.get_subjects())] mean_morphed_stcs = map(sum, zip(*all_morphed_stcs)) subject = 'average' # XXX to fix if config.get_sessions(): session = config.get_sessions()[0] else: session = None bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space, datatype=config.get_datatype(), root=config.deriv_root, check=False) if isinstance(config.conditions, dict): conditions = list(config.conditions.keys()) else: conditions = config.conditions for condition, this_stc in zip(conditions, mean_morphed_stcs): this_stc /= len(all_morphed_stcs) method = config.inverse_method cond_str = config.sanitize_cond_name(condition) inverse_str = method hemi_str = 'hemi' # MNE will auto-append '-lh' and '-rh'. morph_str = 'morph2fsaverage' fname_stc_avg = bids_path.copy().update( suffix=f'{cond_str}+{inverse_str}+{morph_str}+{hemi_str}') this_stc.save(fname_stc_avg) msg = 'Completed Step 13: Grand-average source estimates' logger.info(gen_log_message(step=13, message=msg))
def compute_cov_from_epochs(subject, session, tmin, tmax): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space) if config.use_ica or config.use_ssp: extension = '_cleaned-epo' else: extension = '-epo' epo_fname = op.join(deriv_path, bids_basename + '%s.fif' % extension) cov_fname = op.join(deriv_path, bids_basename + '-cov.fif') msg = (f"Computing regularized covariance based on epochs' baseline " f"periods. Input: {epo_fname}, Output: {cov_fname}") logger.info( gen_log_message(message=msg, step=11, subject=subject, session=session)) epochs = mne.read_epochs(epo_fname, preload=True) cov = mne.compute_covariance(epochs, tmin=tmin, tmax=tmax, method='shrunk', rank='info') cov.save(cov_fname)
def run_evoked(subject, session=None): bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root) processing = None if config.use_ica or config.use_ssp: processing = 'clean' fname_in = bids_path.copy().update(processing=processing, suffix='epo', check=False) fname_out = bids_path.copy().update(suffix='ave', check=False) msg = f'Input: {fname_in}, Output: {fname_out}' logger.info(gen_log_message(message=msg, step=6, subject=subject, session=session)) epochs = mne.read_epochs(fname_in, preload=True) msg = 'Creating evoked data based on experimental conditions …' logger.info(gen_log_message(message=msg, step=6, subject=subject, session=session)) all_evoked = dict() if isinstance(config.conditions, dict): for new_cond_name, orig_cond_name in config.conditions.items(): evoked = epochs[orig_cond_name].average() evoked.comment = evoked.comment.replace(orig_cond_name, new_cond_name) all_evoked[new_cond_name] = evoked else: for condition in config.conditions: evoked = epochs[condition].average() all_evoked[condition] = evoked if config.contrasts: msg = 'Contrasting evoked responses …' logger.info(gen_log_message(message=msg, step=6, subject=subject, session=session)) for contrast in config.contrasts: cond_1, cond_2 = contrast evoked_diff = mne.combine_evoked([all_evoked[cond_1], all_evoked[cond_2]], weights=[1, -1]) all_evoked[contrast] = evoked_diff evokeds = list(all_evoked.values()) mne.write_evokeds(fname_out, evokeds) if config.interactive: for evoked in evokeds: evoked.plot()
def plot_auto_scores(subject, session): """Plot automated bad channel detection scores. """ import json_tricks fname_scores = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space, suffix='scores', extension='.json', datatype=config.get_datatype(), root=config.deriv_root, check=False) all_figs = [] all_captions = [] for run in config.get_runs(): with open(fname_scores.update(run=run), 'r') as f: auto_scores = json_tricks.load(f) figs = config.plot_auto_scores(auto_scores) all_figs.extend(figs) # Could be more than 1 fig, e.g. "grad" and "mag" captions = [f'Run {run}'] * len(figs) all_captions.extend(captions) return all_figs, all_captions
def plot_events(subject, session): raws_filt = [] raw_fname = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, recording=config.rec, space=config.space, processing='filt', suffix='raw', extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) for run in config.get_runs(): this_raw_fname = raw_fname.copy().update(run=run) if this_raw_fname.copy().update(split='01').fpath.exists(): this_raw_fname.update(split='01') raw_filt = mne.io.read_raw_fif(this_raw_fname) raws_filt.append(raw_filt) del this_raw_fname # Concatenate the filtered raws and extract the events. raw_filt_concat = mne.concatenate_raws(raws_filt) events, event_id = mne.events_from_annotations(raw=raw_filt_concat) fig = mne.viz.plot_events(events=events, event_id=event_id, first_samp=raw_filt_concat.first_samp, sfreq=raw_filt_concat.info['sfreq'], show=False) return fig
def get_config(subject: Optional[str] = None, session: Optional[str] = None) -> BunchConst: cfg = BunchConst(task=config.get_task(), datatype=config.get_datatype(), runs=config.get_runs(subject=subject), acq=config.acq, rec=config.rec, space=config.space, deriv_root=config.get_deriv_root(), interactive=config.interactive, ica_l_freq=config.ica_l_freq, ica_algorithm=config.ica_algorithm, ica_n_components=config.ica_n_components, ica_max_iterations=config.ica_max_iterations, ica_decim=config.ica_decim, ica_reject=config.get_ica_reject(), ica_eog_threshold=config.ica_eog_threshold, ica_ctps_ecg_threshold=config.ica_ctps_ecg_threshold, random_state=config.random_state, ch_types=config.ch_types, l_freq=config.l_freq, decim=config.decim, resample_sfreq=config.resample_sfreq, event_repeated=config.event_repeated, epochs_tmin=config.epochs_tmin, epochs_tmax=config.epochs_tmax, eeg_reference=config.get_eeg_reference(), eog_channels=config.eog_channels) return cfg
def compute_cov_from_empty_room(subject, session): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space) raw_er_fname = op.join(deriv_path, bids_basename + '_emptyroom_filt_raw.fif') cov_fname = op.join(deriv_path, bids_basename + '-cov.fif') extra_params = dict() if not config.use_maxwell_filter and config.allow_maxshield: extra_params['allow_maxshield'] = config.allow_maxshield msg = (f'Computing regularized covariance based on empty-room recording. ' f'Input: {raw_er_fname}, Output: {cov_fname}') logger.info( gen_log_message(message=msg, step=11, subject=subject, session=session)) raw_er = mne.io.read_raw_fif(raw_er_fname, preload=True, **extra_params) cov = mne.compute_raw_covariance(raw_er, method='shrunk', rank='info') cov.save(cov_fname)
def compute_cov_from_empty_room(subject, session): bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) raw_er_fname = bids_path.copy().update(processing='filt', task='noise', suffix='raw') cov_fname = bids_path.copy().update(suffix='cov') extra_params = dict() if not config.use_maxwell_filter and config.allow_maxshield: extra_params['allow_maxshield'] = config.allow_maxshield msg = (f'Computing regularized covariance based on empty-room recording. ' f'Input: {raw_er_fname}, Output: {cov_fname}') logger.info( gen_log_message(message=msg, step=11, subject=subject, session=session)) raw_er = mne.io.read_raw_fif(raw_er_fname, preload=True, **extra_params) cov = mne.compute_raw_covariance(raw_er, method='shrunk', rank='info') cov.save(cov_fname)
def get_config( subject: Optional[str] = None, session: Optional[str] = None ) -> BunchConst: cfg = BunchConst( process_er=config.process_er, runs=config.get_runs(subject=subject), use_maxwell_filter=config.use_maxwell_filter, proc=config.proc, task=config.get_task(), datatype=config.get_datatype(), session=session, acq=config.acq, rec=config.rec, space=config.space, bids_root=config.get_bids_root(), deriv_root=config.get_deriv_root(), interactive=config.interactive, epochs_tmin=config.epochs_tmin, epochs_tmax=config.epochs_tmax, epochs_metadata_tmin=config.epochs_metadata_tmin, epochs_metadata_tmax=config.epochs_metadata_tmax, epochs_metadata_keep_first=config.epochs_metadata_keep_first, epochs_metadata_keep_last=config.epochs_metadata_keep_last, event_repeated=config.event_repeated, decim=config.decim, ch_types=config.ch_types, eeg_reference=config.get_eeg_reference() ) return cfg
def compute_cov_from_epochs(subject, session, tmin, tmax): bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) processing = None if config.use_ica or config.use_ssp: processing = 'clean' epo_fname = bids_path.copy().update(processing=processing, suffix='epo') cov_fname = bids_path.copy().update(suffix='cov') msg = (f"Computing regularized covariance based on epochs' baseline " f"periods. Input: {epo_fname}, Output: {cov_fname}") logger.info( gen_log_message(message=msg, step=11, subject=subject, session=session)) epochs = mne.read_epochs(epo_fname, preload=True) cov = mne.compute_covariance(epochs, tmin=tmin, tmax=tmax, method='shrunk', rank='info') cov.save(cov_fname)
def plot_events(subject, session, deriv_path): raws_filt = [] bids_basename = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, recording=config.rec, space=config.space, prefix=deriv_path, kind=config.get_kind(), processing='filt', extension='.fif') for run in config.get_runs(): fname = bids_basename.copy().update(run=run) raw_filt = mne.io.read_raw_fif(fname) raws_filt.append(raw_filt) del fname # Concatenate the filtered raws and extract the events. raw_filt_concat = mne.concatenate_raws(raws_filt) events, event_id = mne.events_from_annotations(raw=raw_filt_concat) fig = mne.viz.plot_events(events=events, event_id=event_id, first_samp=raw_filt_concat.first_samp, sfreq=raw_filt_concat.info['sfreq'], show=False) return fig
def run_ssp(subject, session=None): # compute SSP on first run of raw run = config.get_runs()[0] bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=run, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root) # Prepare a name to save the data raw_fname_in = bids_path.copy().update(processing='filt', suffix='raw', check=False) # when saving proj, use run=None proj_fname_out = bids_path.copy().update(run=None, suffix='proj', check=False) msg = f'Input: {raw_fname_in}, Output: {proj_fname_out}' logger.info( gen_log_message(message=msg, step=4, subject=subject, session=session)) if raw_fname_in.copy().update(split='01').fpath.exists(): raw_fname_in.update(split='01') raw = mne.io.read_raw_fif(raw_fname_in) # XXX : n_xxx should be options in config msg = 'Computing SSPs for ECG' logger.debug( gen_log_message(message=msg, step=4, subject=subject, session=session)) ecg_projs, ecg_events = compute_proj_ecg(raw, n_grad=1, n_mag=1, n_eeg=0, average=True) msg = 'Computing SSPs for EOG' logger.debug( gen_log_message(message=msg, step=4, subject=subject, session=session)) if config.eog_channels: assert all( [ch_name in raw.ch_names for ch_name in config.eog_channels]) ch_name = ','.join(config.eog_channels) else: ch_name = None eog_projs, eog_events = compute_proj_eog(raw, ch_name=ch_name, n_grad=1, n_mag=1, n_eeg=1, average=True) mne.write_proj(proj_fname_out, eog_projs + ecg_projs)
def run_inverse(subject, session=None): bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) fname_ave = bids_path.copy().update(suffix='ave') fname_fwd = bids_path.copy().update(suffix='fwd') fname_cov = bids_path.copy().update(suffix='cov') fname_inv = bids_path.copy().update(suffix='inv') evokeds = mne.read_evokeds(fname_ave) cov = mne.read_cov(fname_cov) forward = mne.read_forward_solution(fname_fwd) info = evokeds[0].info inverse_operator = make_inverse_operator(info, forward, cov, loose=0.2, depth=0.8, rank='info') write_inverse_operator(fname_inv, inverse_operator) # Apply inverse snr = 3.0 lambda2 = 1.0 / snr**2 if isinstance(config.conditions, dict): conditions = list(config.conditions.keys()) else: conditions = config.conditions for condition, evoked in zip(conditions, evokeds): method = config.inverse_method pick_ori = None cond_str = config.sanitize_cond_name(condition) inverse_str = method hemi_str = 'hemi' # MNE will auto-append '-lh' and '-rh'. fname_stc = bids_path.copy().update( suffix=f'{cond_str}+{inverse_str}+{hemi_str}', extension=None) if "eeg" in config.ch_types: evoked.set_eeg_reference('average', projection=True) stc = apply_inverse(evoked=evoked, inverse_operator=inverse_operator, lambda2=lambda2, method=method, pick_ori=pick_ori) stc.save(fname_stc)
def run_evoked(subject, session=None): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space) if config.use_ica or config.use_ssp: extension = '_cleaned-epo' else: extension = '-epo' fname_in = op.join(deriv_path, bids_basename + '%s.fif' % extension) fname_out = op.join(deriv_path, bids_basename + '-ave.fif') msg = f'Input: {fname_in}, Output: {fname_out}' logger.info( gen_log_message(message=msg, step=6, subject=subject, session=session)) epochs = mne.read_epochs(fname_in, preload=True) msg = 'Creating evoked data based on experimental conditions …' logger.info( gen_log_message(message=msg, step=6, subject=subject, session=session)) evokeds = [] for condition in config.conditions: evoked = epochs[condition].average() evokeds.append(evoked) if config.contrasts: msg = 'Contrasting evoked responses …' logger.info( gen_log_message(message=msg, step=6, subject=subject, session=session)) for contrast in config.contrasts: cond_1, cond_2 = contrast evoked_1 = epochs[cond_1].average() evoked_2 = epochs[cond_2].average() evoked_diff = mne.combine_evoked([evoked_1, evoked_2], weights=[1, -1]) evokeds.append(evoked_diff) mne.evoked.write_evokeds(fname_out, evokeds) if config.interactive: for evoked in evokeds: evoked.plot()
def run_evoked(subject, session=None): bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root) processing = None if config.use_ica or config.use_ssp: processing = 'clean' fname_in = bids_path.copy().update(processing=processing, suffix='epo', check=False) fname_out = bids_path.copy().update(suffix='ave', check=False) msg = f'Input: {fname_in}, Output: {fname_out}' logger.info( gen_log_message(message=msg, step=6, subject=subject, session=session)) epochs = mne.read_epochs(fname_in, preload=True) msg = 'Creating evoked data based on experimental conditions …' logger.info( gen_log_message(message=msg, step=6, subject=subject, session=session)) evokeds = [] for condition in config.conditions: evoked = epochs[condition].average() evokeds.append(evoked) if config.contrasts: msg = 'Contrasting evoked responses …' logger.info( gen_log_message(message=msg, step=6, subject=subject, session=session)) for contrast in config.contrasts: cond_1, cond_2 = contrast evoked_1 = epochs[cond_1].average() evoked_2 = epochs[cond_2].average() evoked_diff = mne.combine_evoked([evoked_1, evoked_2], weights=[1, -1]) evokeds.append(evoked_diff) mne.write_evokeds(fname_out, evokeds) if config.interactive: for evoked in evokeds: evoked.plot()
def run_forward(subject, session=None): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, prefix=deriv_path, check=False) fname_evoked = bids_basename.copy().update(kind='ave', extension='.fif') fname_trans = bids_basename.copy().update(kind='trans', extension='.fif') fname_fwd = bids_basename.copy().update(kind='fwd', extension='.fif') msg = f'Input: {fname_evoked}, Output: {fname_fwd}' logger.info( gen_log_message(message=msg, step=10, subject=subject, session=session)) # Find the raw data file trans = get_head_mri_trans(bids_basename=(bids_basename.copy().update( run=config.get_runs()[0], prefix=None)), bids_root=config.bids_root) mne.write_trans(fname_trans, trans) src = mne.setup_source_space(subject, spacing=config.spacing, subjects_dir=config.get_fs_subjects_dir(), add_dist=False) evoked = mne.read_evokeds(fname_evoked, condition=0) # Here we only use 3-layers BEM only if EEG is available. if 'eeg' in config.ch_types: model = mne.make_bem_model(subject, ico=4, conductivity=(0.3, 0.006, 0.3), subjects_dir=config.get_fs_subjects_dir()) else: model = mne.make_bem_model(subject, ico=4, conductivity=(0.3, ), subjects_dir=config.get_fs_subjects_dir()) bem = mne.make_bem_solution(model) fwd = mne.make_forward_solution(evoked.info, trans, src, bem, mindist=config.mindist) mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
def run_forward(subject, session=None): bids_path = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) fname_evoked = bids_path.copy().update(suffix='ave') fname_trans = bids_path.copy().update(suffix='trans') fname_fwd = bids_path.copy().update(suffix='fwd') msg = f'Input: {fname_evoked}, Output: {fname_fwd}' logger.info( gen_log_message(message=msg, step=10, subject=subject, session=session)) # Retrieve the head -> MRI transformation matrix from the MRI sidecar file # in the input data, and save it to an MNE "trans" file in the derivatives # folder. trans = get_head_mri_trans(bids_path.copy().update( run=config.get_runs()[0], root=config.bids_root)) mne.write_trans(fname_trans, trans) src = mne.setup_source_space(subject, spacing=config.spacing, subjects_dir=config.get_fs_subjects_dir(), add_dist=False) evoked = mne.read_evokeds(fname_evoked, condition=0) # Here we only use 3-layers BEM only if EEG is available. if 'eeg' in config.ch_types: model = mne.make_bem_model(subject, ico=4, conductivity=(0.3, 0.006, 0.3), subjects_dir=config.get_fs_subjects_dir()) else: model = mne.make_bem_model(subject, ico=4, conductivity=(0.3, ), subjects_dir=config.get_fs_subjects_dir()) bem = mne.make_bem_solution(model) fwd = mne.make_forward_solution(evoked.info, trans, src, bem, mindist=config.mindist) mne.write_forward_solution(fname_fwd, fwd, overwrite=True)
def run_time_decoding(subject, condition1, condition2, session=None): msg = f'Contrasting conditions: {condition1} – {condition2}' logger.info( gen_log_message(message=msg, step=7, subject=subject, session=session)) fname_epochs = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, suffix='epo', extension='.fif', datatype=config.get_datatype(), root=config.deriv_root, check=False) epochs = mne.read_epochs(fname_epochs) # We define the epochs and the labels epochs = mne.concatenate_epochs([epochs[condition1], epochs[condition2]]) X = epochs.get_data() n_cond1 = len(epochs[condition1]) n_cond2 = len(epochs[condition2]) y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)] clf = make_pipeline( StandardScaler(), LogisticRegression(solver='liblinear', random_state=config.random_state)) se = SlidingEstimator(clf, scoring=config.decoding_metric, n_jobs=config.N_JOBS) scores = cross_val_multiscore(se, X=X, y=y, cv=config.decoding_n_splits) # let's save the scores now a_vs_b = f'{condition1}-{condition2}'.replace(op.sep, '') processing = f'{a_vs_b}+{config.decoding_metric}' processing = processing.replace('_', '-').replace('-', '') fname_mat = fname_epochs.copy().update(suffix='decoding', processing=processing, extension='.mat') savemat(fname_mat, {'scores': scores, 'times': epochs.times}) fname_tsv = fname_mat.copy().update(extension='.tsv') tabular_data = pd.DataFrame( dict(cond_1=[condition1] * len(epochs.times), cond_2=[condition2] * len(epochs.times), time=epochs.times, mean_crossval_score=scores.mean(axis=0), metric=[config.decoding_metric] * len(epochs.times))) tabular_data.to_csv(fname_tsv, sep='\t', index=False)
def get_config(subject: Optional[str] = None, session: Optional[str] = None) -> BunchConst: cfg = BunchConst( task=config.get_task(), datatype=config.get_datatype(), acq=config.acq, rec=config.rec, space=config.space, deriv_root=config.get_deriv_root(), ) return cfg
def main(): """Run grp ave.""" msg = 'Running Step 13: Grand-average source estimates' logger.info(gen_log_message(step=13, message=msg)) mne.datasets.fetch_fsaverage(subjects_dir=config.get_fs_subjects_dir()) parallel, run_func, _ = parallel_func(morph_stc, n_jobs=config.N_JOBS) all_morphed_stcs = parallel(run_func(subject, session) for subject, session in itertools.product(config.get_subjects(), config.get_sessions())) all_morphed_stcs = [morphed_stcs for morphed_stcs, subject in zip(all_morphed_stcs, config.get_subjects())] mean_morphed_stcs = map(sum, zip(*all_morphed_stcs)) subject = 'average' # XXX to fix if config.get_sessions(): session = config.get_sessions()[0] else: session = None deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space, prefix=deriv_path, check=False) for condition, this_stc in zip(config.conditions, mean_morphed_stcs): this_stc /= len(all_morphed_stcs) method = config.inverse_method cond_str = condition.replace(op.sep, '').replace('_', '') inverse_str = method hemi_str = 'hemi' # MNE will auto-append '-lh' and '-rh'. morph_str = 'morph2fsaverage' fname_stc_avg = bids_basename.copy().update( kind=f'{cond_str}+{inverse_str}+{morph_str}+{hemi_str}') this_stc.save(fname_stc_avg) msg = 'Completed Step 13: Grand-average source estimates' logger.info(gen_log_message(step=13, message=msg))
def run_inverse(subject, session=None): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = BIDSPath(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, recording=config.rec, space=config.space, prefix=deriv_path, extension='.fif', check=False) fname_ave = bids_basename.copy().update(kind='ave') fname_fwd = bids_basename.copy().update(kind='fwd') fname_cov = bids_basename.copy().update(kind='cov') fname_inv = bids_basename.copy().update(kind='inv') evokeds = mne.read_evokeds(fname_ave) cov = mne.read_cov(fname_cov) forward = mne.read_forward_solution(fname_fwd) info = evokeds[0].info inverse_operator = make_inverse_operator(info, forward, cov, loose=0.2, depth=0.8, rank='info') write_inverse_operator(fname_inv, inverse_operator) # Apply inverse snr = 3.0 lambda2 = 1.0 / snr**2 for condition, evoked in zip(config.conditions, evokeds): method = config.inverse_method pick_ori = None cond_str = condition.replace(op.sep, '').replace('_', '') inverse_str = method hemi_str = 'hemi' # MNE will auto-append '-lh' and '-rh'. fname_stc = bids_basename.copy().update( kind=f'{cond_str}+{inverse_str}+{hemi_str}', extension=None) stc = apply_inverse(evoked=evoked, inverse_operator=inverse_operator, lambda2=lambda2, method=method, pick_ori=pick_ori) stc.save(fname_stc)
def get_config(subject: Optional[str] = None, session: Optional[str] = None) -> SimpleNamespace: cfg = SimpleNamespace(task=config.get_task(), datatype=config.get_datatype(), acq=config.acq, rec=config.rec, space=config.space, deriv_root=config.get_deriv_root(), interactive=config.interactive, baseline=config.baseline, ica_reject=config.get_ica_reject()) return cfg
def run_inverse(subject, session=None): deriv_path = config.get_subject_deriv_path(subject=subject, session=session, kind=config.get_kind()) bids_basename = make_bids_basename(subject=subject, session=session, task=config.get_task(), acquisition=config.acq, run=None, processing=config.proc, recording=config.rec, space=config.space) fname_ave = op.join(deriv_path, bids_basename + '-ave.fif') fname_fwd = op.join(deriv_path, bids_basename + '-fwd.fif') fname_cov = op.join(deriv_path, bids_basename + '-cov.fif') fname_inv = op.join(deriv_path, bids_basename + '-inv.fif') evokeds = mne.read_evokeds(fname_ave) cov = mne.read_cov(fname_cov) forward = mne.read_forward_solution(fname_fwd) info = evokeds[0].info inverse_operator = make_inverse_operator(info, forward, cov, loose=0.2, depth=0.8, rank='info') write_inverse_operator(fname_inv, inverse_operator) # Apply inverse snr = 3.0 lambda2 = 1.0 / snr**2 for condition, evoked in zip(config.conditions, evokeds): method = config.inverse_method pick_ori = None cond_str = 'cond-%s' % condition.replace(op.sep, '') inverse_str = 'inverse-%s' % method hemi_str = 'hemi' # MNE will auto-append '-lh' and '-rh'. fname_stc = op.join( deriv_path, '_'.join([bids_basename, cond_str, inverse_str, hemi_str])) stc = apply_inverse(evoked=evoked, inverse_operator=inverse_operator, lambda2=lambda2, method=method, pick_ori=pick_ori) stc.save(fname_stc)
def get_config( subject: Optional[str] = None, session: Optional[str] = None ) -> SimpleNamespace: cfg = SimpleNamespace( task=config.get_task(), datatype=config.get_datatype(), acq=config.acq, rec=config.rec, space=config.space, deriv_root=config.get_deriv_root(), ) return cfg
def get_config(subject: Optional[str] = None, session: Optional[str] = None) -> SimpleNamespace: # Deal with configurations where `deriv_root` was specified, but not # `fs_subjects_dir`. We normally raise an exception in this case in # `get_fs_subjects_dir()`. However, in situations where users only run the # sensor-space scripts, we never call this function, so everything works # totally fine at first (which is expected). Yet, when creating the # reports, the pipeline would fail with an exception – which is # unjustified, as it would not make sense to force users to provide an # `fs_subjects_dir` if they don't care about source analysis anyway! So # simply assign a dummy value in such cases. # `get_fs_subject()` calls `get_fs_subjects_dir()`, so take care of this # too. try: fs_subjects_dir = config.get_fs_subjects_dir() except ValueError: fs_subjects_dir = None fs_subject = None else: fs_subject = config.get_fs_subject(subject=subject) cfg = SimpleNamespace( task=config.get_task(), runs=config.get_runs(subject=subject), datatype=config.get_datatype(), acq=config.acq, rec=config.rec, space=config.space, proc=config.proc, analyze_channels=config.analyze_channels, process_er=config.process_er, find_noisy_channels_meg=config.find_noisy_channels_meg, h_freq=config.h_freq, spatial_filter=config.spatial_filter, ica_reject=config.ica_reject, conditions=config.conditions, contrasts=config.contrasts, time_frequency_conditions=config.time_frequency_conditions, decode=config.decode, decoding_metric=config.decoding_metric, n_boot=config.n_boot, inverse_method=config.inverse_method, fs_subject=fs_subject, fs_subjects_dir=fs_subjects_dir, deriv_root=config.get_deriv_root(), bids_root=config.get_bids_root(), use_template_mri=config.use_template_mri, interactive=config.interactive, plot_psd_for_runs=config.plot_psd_for_runs, ) return cfg