def __init__(self): np.random.seed(0) self._save_dir = os.path.join(params['exp_dir'], params['exp_name']) yamls = [ fname for fname in os.listdir(self._save_dir) if '.yaml' in fname and '~' not in fname ] assert (len(yamls) == 1) yaml_path = os.path.join(self._save_dir, yamls[0]) load_params(yaml_path) params['yaml_path'] = yaml_path ### turn off noise pred_dagger_params = params['prediction']['dagger'] pred_dagger_params['control_noise']['type'] = 'zero' pred_dagger_params['epsilon_greedy'] = None ProbcollBebop2d.__init__(self, read_only=True) cond_params = copy.deepcopy(pred_dagger_params['conditions']) cond_params['repeats'] = 100 self._conditions = Conditions(cond_params=cond_params) self._cost_probcoll_init = None
def main(): args = config.load_params() if args.seed > 0: seed = args.seed seed_torch(seed) else: seed = random.randint(1, 999999999) seed_torch(seed) config_file = 'program/configs/{}.json'.format(args.config_file) hp, template_config, dataset_config_set, model_config_set, criterion_config_set, \ optimizer_config, trainer_config = config.load_configs(config_file, args.config_file) hp.seed = seed _trainer = trainer.trainer(hp, template_config, dataset_config_set, model_config_set, criterion_config_set, optimizer_config, trainer_config, resume = args.resume, ) _trainer()
def __init__(self, on_replay=False, parent_exp_dir=None): self.on_replay = on_replay self._save_dir = os.path.join(params['exp_dir'], params['exp_name']) yamls = [ fname for fname in os.listdir(self._save_dir) if '.yaml' in fname and '~' not in fname ] yaml_path = os.path.join(self._save_dir, yamls[0]) load_params(yaml_path) params['yaml_path'] = yaml_path if self.on_replay: self._save_dir = os.path.join(self._save_dir, 'replay') self._logger = get_logger(self.__class__.__name__, 'info')
image_msg = image_time_msg[1] cmd_vel_msg = cmd_vel_time_msg[1] ### image im = AgentBebop2d.process_image(image_msg, cvb) sample.set_O(im.ravel(), t=t, sub_obs='camera') ### collision sample.set_O([0], t=t, sub_obs='collision') ### linearvel sample.set_X([cmd_vel_msg.linear.x, cmd_vel_msg.linear.y], t=t) sample.set_U([cmd_vel_msg.linear.x, cmd_vel_msg.linear.y], t=t) sample.set_O([int(is_coll)], t=-1, sub_obs='collision') # sample.set_O([int(np.random.random() > 0.5)], t=-1, sub_obs='collision') # tmp assert(sample.isfinite()) return sample if __name__ == '__main__': rospy.init_node('rosbag_to_sample', anonymous=True) yaml_path = os.path.join(FOLDER, 'params_bebop2d.yaml') load_params(yaml_path) samples = [rosbag_to_sample(os.path.join(FOLDER, f)) for f in sorted(os.listdir(FOLDER)) if os.path.splitext(f)[1] == '.bag'] samples = filter(lambda x: x is not None, samples) Sample.save(os.path.join(FOLDER, 'samples.npz'), samples)