Read in the PSF measurements, to find out what subfields have the best PSFs """ import momentsml import momentsml.plot import config import numpy as np import matplotlib.pyplot as plt from momentsml.tools.feature import Feature import logging logging.basicConfig(format=config.loggerformat, level=logging.DEBUG) logger = logging.getLogger(__name__) # Loading the run great3 = config.load_run() """ # Read in the star measurements cat = momentsml.tools.io.readpickle(great3.path("obs", "allstars_meascat.pkl")) # Compute stats per subfield, by first restructuring the catalog cat = momentsml.tools.table.groupreshape(cat, groupcolnames=["subfield"]) cat["psf_adamom_g"] = np.hypot(cat["psf_adamom_g1"], cat["psf_adamom_g2"]) momentsml.tools.table.addstats(cat, "psf_adamom_sigma") momentsml.tools.table.addstats(cat, "psf_adamom_g") #print cat #print momentsml.tools.table.info(cat) cat = momentsml.tools.io.writepickle(cat, great3.path("obs", "allstars_meascat_restruct.pkl")) """
""" import momentsml import momentsmlgreat3 import momentsml.plot from momentsml.tools.feature import Feature import matplotlib.pyplot as plt import numpy as np import config import os import logging logging.basicConfig(format=config.loggerformat, level=logging.INFO) run = config.load_run() # Best subfield: subfield = 99 spname = "G3Sersics_nn" #spname = run.simparams.name simcat = momentsml.tools.io.readpickle( os.path.join(run.measdir, run.simparams.name, "groupmeascat.pkl")) #print momentsml.tools.table.info(simcat) bestsub = momentsml.tools.table.Selector("bestsub", [("is", "subfield", subfield)]) simcat = bestsub.select(simcat)