Пример #1
0
 def search_word(self, instance, value):
     config.print_args(instance,
                       value,
                       args_name='instance',
                       kwargs_name='value')
     res = config.dictionary.search_word(value)
     print('Search result: {}'.format(res))
     # self.rv.data = [{'text':'{} - {}'.format(key, ' // '.join(value))} for key, value in res.items()]
     self.rv.data = config.recycleview_data_formatter(res)
     return None
Пример #2
0
    type=float,
    default=0.0,
    help=
    "If null_score - best_non_null is greater than the threshold predict null."
)

args = parser.parse_args()

batch_size = args.num_nodes * args.gpu_num_per_node * args.batch_size_per_device
eval_batch_size = args.num_nodes * args.gpu_num_per_node * args.eval_batch_size_per_device

epoch_size = math.ceil(args.train_example_num / batch_size)
num_eval_steps = math.ceil(args.eval_example_num / eval_batch_size)
args.iter_num = epoch_size * args.num_epochs
args.predict_batch_size = eval_batch_size
configs.print_args(args)


def SquadDecoder(data_dir,
                 batch_size,
                 data_part_num,
                 seq_length,
                 is_train=True):
    with flow.scope.placement("cpu", "0:0"):
        ofrecord = flow.data.ofrecord_reader(data_dir,
                                             batch_size=batch_size,
                                             data_part_num=data_part_num,
                                             random_shuffle=is_train,
                                             shuffle_after_epoch=is_train)
        blob_confs = {}
Пример #3
0
    help="If null_score - best_non_null is greater than the threshold predict null.",
)

args = parser.parse_args()

batch_size = args.num_nodes * args.gpu_num_per_node * args.batch_size_per_device
eval_batch_size = (
    args.num_nodes * args.gpu_num_per_node * args.eval_batch_size_per_device
)
device = flow.device(args.device)

epoch_size = math.ceil(args.train_example_num / batch_size)
num_eval_steps = math.ceil(args.eval_example_num / eval_batch_size)
args.iter_num = epoch_size * args.num_epochs
args.predict_batch_size = eval_batch_size
config.print_args(args)


def save_model(module: nn.Module, checkpoint_path: str, name: str):
    snapshot_save_path = os.path.join(checkpoint_path, f"snapshot_{name}")
    if not os.path.exists(checkpoint_path):
        os.makedirs(checkpoint_path)
    print(f"Saving model to {snapshot_save_path}")
    flow.save(module.state_dict(), snapshot_save_path)


class SquadDecoder(nn.Module):
    def __init__(self, data_dir, batch_size, data_part_num, seq_length, is_train=True):
        super().__init__()
        self.is_train = is_train
Пример #4
0
from trainer import Trainer

if __name__ == '__main__':
    if not args.debug_mode:
        import wandb
        wandb.init(project=args.project,
                   name=args.name,
                   tags=args.tags,
                   config=args)
        train_data = dataset.MDB_Dataset('MusicDelta_80sRock')
        test_data = dataset.MDB_Dataset('MusicDelta_80sRock')
    else:
        train_data = dataset.MDB_Dataset('MusicDelta_80sRock')
        test_data = dataset.MDB_Dataset('MusicDelta_80sRock')

    print_args(args)

    # get_model
    if args.model_arc == 'CNN':
        model = CNN(hidden_channel_num=10, output_number=4)
    else:
        raise AssertionError

    model = model.to(args.device)
    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)

    if not args.debug_mode:
        wandb.watch(model)

    trainer = Trainer(model, optimizer, args.device, args.debug_mode,
                      args.test_per_epoch, args.num_epochs, args.weight_path,