Пример #1
0
def detect_audios(model, baseModel, audiosPath):
    vgg_extract.parse_audio_files(audiosPath, 'tmpImages')
    imagesPath = 'tmpImages'
    featuresLength = np.prod(baseModel.layers[-1].output.shape[1:])

    imagePaths = list(paths.list_images('tmpImages'))
    classNames = target_names()

    for imagePath in imagePaths:
        features = []
        batchImages = []
        image = load_img(imagePath, target_size=(WIDTH, HEIGHT))
        image = img_to_array(image)
        image = np.expand_dims(image, axis=0)
        image = imagenet_utils.preprocess_input(image)
        batchImages.append(image)
        batchImages = np.vstack(batchImages)
        batchFeatures = baseModel.predict(batchImages,
                                          batch_size=len(batchImages))
        features.append(batchFeatures.reshape(len(batchImages),
                                              featuresLength))
        features = np.vstack(features)
        preds = model.predict(features)
        pred = preds[0]
        print(imagePath + ": " + str(classNames[int(pred)]))
    shutil.rmtree('tmpImages')
Пример #2
0
def detect_real_time(model, baseModel):
    featuresLength = np.prod(baseModel.layers[-1].output.shape[1:])

    imagePaths = ['test_sample.png']
    classNames = target_names()

    bs = 5

    while True:
        features = []
        record_input()
        for i in np.arange(0, len(imagePaths), bs):
            batchPaths = imagePaths[i:i + bs]
            batchImages = []

            for (_, imagePath) in enumerate(batchPaths):
                image = load_img(imagePath, target_size=(WIDTH, HEIGHT))
                image = img_to_array(image)
                image = np.expand_dims(image, axis=0)
                image = imagenet_utils.preprocess_input(image)
                batchImages.append(image)

            batchImages = np.vstack(batchImages)
            batchFeatures = baseModel.predict(batchImages,
                                              batch_size=len(batchImages))
            features.append(
                batchFeatures.reshape(len(batchImages), featuresLength))

        features = np.vstack(features)

        pred = model.predict_proba(features)[0]
        index = np.argmax(pred)
        prob = pred[index]
        print(str(classNames[index]) + " - " + str(prob))
def detect_real_time(model, baseModel, storeFile=False):
    imagePaths = ['test_sample.png']
    classNames = target_names()

    try:
        with sd.InputStream(samplerate=sample_rate,
                            callback=callback,
                            channels=2):
            while run:
                q.get()
                melspectrogram_preprocess(data, sample_rate)

                imagePath = imagePaths[0]

                image = cv2.imread(imagePath)
                image = aap.preprocess(image)
                image = iap.preprocess(image)
                image = np.expand_dims(image, axis=0) / 255.0

                result = model.predict(image)
                pred = result.argmax(axis=1)[0]

                print(result)
                prob = result[0][pred]
                print(str(classNames[pred]) + " - " + str(prob))

    except KeyboardInterrupt:
        print('\nRecording finished')
def detect_images(model, baseModel, imagesPath):

    imagePaths = list(paths.list_images(imagesPath))
    classNames = target_names()

    labels = [p.split(os.path.sep)[-2] for p in imagePaths]
    preds = []

    for i in np.arange(0, len(imagePaths)):
        imagePath = imagePaths[i]

        image = cv2.imread(imagePath)
        image = aap.preprocess(image)
        image = iap.preprocess(image)
        image = np.expand_dims(image, axis=0) / 255.0

        result = model.predict(image)
        pred = result.argmax(axis=1)[0]

        preds.append(pred)

    labels = np.vstack(labels)
    lb = LabelEncoder().fit(np.vstack(classNames))
    labels = lb.transform(labels)

    print(classification_report(labels, preds, target_names=classNames))
def detect_audios(model, baseModel, audiosPath):
    vgg_extract.parse_audio_files(audiosPath, 'tmpImages')
    imagesPath = 'tmpImages'

    imagePaths = list(paths.list_images('tmpImages'))
    classNames = target_names()

    for imagePath in imagePaths:
        image = cv2.imread(imagePath)
        image = aap.preprocess(image)
        image = iap.preprocess(image)
        image = np.expand_dims(image, axis=0) / 255.0

        result = model.predict(image)
        pred = result.argmax(axis=1)[0]
        print(imagePath + ": " + str(classNames[int(pred)]))
    shutil.rmtree('tmpImages')
Пример #6
0
def detect_real_time(model, baseModel):

    imagePaths = ['test_sample.png']
    classNames = target_names()

    while True:
        record_input()

        imagePath = imagePaths[0]

        image = cv2.imread(imagePath)
        image = aap.preprocess(image)
        image = iap.preprocess(image)
        image = np.expand_dims(image, axis=0) / 255.0

        result = model.predict(image)
        pred = result.argmax(axis=1)[0]

        print(result)
        prob = result[0][pred]
        print(str(classNames[pred]) + " - " + str(prob))
Пример #7
0
def detect_images(model, baseModel, imagesPath):
    featuresLength = np.prod(baseModel.layers[-1].output.shape[1:])

    imagePaths = list(paths.list_images(imagesPath))
    classNames = target_names()

    bs = 5
    labels = [p.split(os.path.sep)[-2] for p in imagePaths]
    features = []

    for i in np.arange(0, len(imagePaths), bs):
        batchPaths = imagePaths[i:i + bs]
        batchImages = []

        for (_, imagePath) in enumerate(batchPaths):
            image = load_img(imagePath, target_size=(WIDTH, HEIGHT))
            image = img_to_array(image)
            image = np.expand_dims(image, axis=0)
            image = imagenet_utils.preprocess_input(image)
            batchImages.append(image)

        batchImages = np.vstack(batchImages)
        batchFeatures = baseModel.predict(batchImages,
                                          batch_size=len(batchImages))
        features.append(batchFeatures.reshape(len(batchImages),
                                              featuresLength))

    labels = np.vstack(labels)
    lb = LabelEncoder().fit(np.vstack(classNames))
    labels = lb.transform(labels)

    features = np.vstack(features)

    preds = model.predict(features)

    print(classification_report(labels, preds, target_names=classNames))