def main(): args = parse_args() config = InferenceConfig.from_config_dir(args.exp_dir) config.test_fn = args.test_file dataset = InferenceDataset(config) model = Seq2seqInferenceModel(config, dataset) model.run_inference(outfile=args.output_file)
def __init__(self,config=None): if config == None: config = InferenceConfig() dir_path = os.path.dirname(os.path.realpath(__file__)) file = open(os.path.join(dir_path, config.MODEL_DIR, config.MODEL_FILE), 'rb') self._svm_model = pickle.load(file) file.close()
def run(filepath, is_gt, visualize): # FIlepath: Path to write file csv for test, else path to gt csv print(visualize) # select trained model dir_names = next(os.walk(MODEL_DIR))[1] print(MODEL_DIR) key = config.NAME.lower() dir_names = filter(lambda f: f.startswith(key), dir_names) dir_names = sorted(dir_names) print(dir_names) if not dir_names: import errno raise FileNotFoundError( errno.ENOENT, "Could not find model directory under {}".format(MODEL_DIR)) fps = [] # Pick last directory for d in dir_names: dir_name = os.path.join(MODEL_DIR, d) # Find the last checkpoint checkpoints = next(os.walk(dir_name))[2] checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) checkpoints = sorted(checkpoints) if not checkpoints: print('No weight files in {}'.format(dir_name)) else: checkpoint = os.path.join(dir_name, checkpoints[-1]) fps.append(checkpoint) model_path = sorted(fps)[-1] print('Found model {}'.format(model_path)) inference_config = InferenceConfig() # Recreate the model in inference mode model = modellib.MaskRCNN(mode='inference', config=inference_config, model_dir=MODEL_DIR) # Load trained weights (fill in path to trained weights here) assert model_path != "", "Provide path to trained weights" print("Loading weights from ", model_path) model.load_weights(model_path, by_name=True) # Get filenames of test dataset DICOM images test_image_fps = get_dicom_fps(test_dicom_dir) # Write predictions to file predict(model, test_image_fps, filepath=filepath, is_gt=is_gt, visualize=visualize)
def evaluate(options): config = InferenceConfig(options) config.FITTING_TYPE = options.numAnchorPlanes if options.dataset == '': dataset = PlaneDataset(options, config, split='test', random=False, load_semantics=False) elif options.dataset == 'occlusion': config_dataset = copy.deepcopy(config) config_dataset.OCCLUSION = False dataset = PlaneDataset(options, config_dataset, split='test', random=False, load_semantics=True) elif 'nyu' in options.dataset: dataset = NYUDataset(options, config, split='val', random=False) elif options.dataset == 'synthia': dataset = SynthiaDataset(options, config, split='val', random=False) elif options.dataset == 'kitti': camera = np.zeros(6) camera[0] = 9.842439e+02 camera[1] = 9.808141e+02 camera[2] = 6.900000e+02 camera[3] = 2.331966e+02 camera[4] = 1242 camera[5] = 375 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/KITTI/scene_3/*.png'), camera=camera) elif options.dataset == '7scene': camera = np.zeros(6) camera[0] = 519 camera[1] = 519 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/SevenScene/scene_3/*.png'), camera=camera) elif options.dataset == 'tanktemple': camera = np.zeros(6) camera[0] = 0.7 camera[1] = 0.7 camera[2] = 0.5 camera[3] = 0.5 camera[4] = 1 camera[5] = 1 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/TankAndTemple/scene_4/*.jpg'), camera=camera) elif options.dataset == 'make3d': camera = np.zeros(6) camera[0] = 0.7 camera[1] = 0.7 camera[2] = 0.5 camera[3] = 0.5 camera[4] = 1 camera[5] = 1 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/Make3D/*.jpg'), camera=camera) elif options.dataset == 'popup': camera = np.zeros(6) camera[0] = 0.7 camera[1] = 0.7 camera[2] = 0.5 camera[3] = 0.5 camera[4] = 1 camera[5] = 1 dataset = InferenceDataset( options, config, image_list=glob.glob('../../Data/PhotoPopup/*.jpg'), camera=camera) elif options.dataset == 'cross' or options.dataset == 'cross_2': image_list = [ 'test/cross_dataset/' + str(c) + '_image.png' for c in range(12) ] cameras = [] camera = np.zeros(6) camera[0] = 587 camera[1] = 587 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 for c in range(4): cameras.append(camera) continue camera_kitti = np.zeros(6) camera_kitti[0] = 9.842439e+02 camera_kitti[1] = 9.808141e+02 camera_kitti[2] = 6.900000e+02 camera_kitti[3] = 2.331966e+02 camera_kitti[4] = 1242.0 camera_kitti[5] = 375.0 for c in range(2): cameras.append(camera_kitti) continue camera_synthia = np.zeros(6) camera_synthia[0] = 133.185088 camera_synthia[1] = 134.587036 camera_synthia[2] = 160.000000 camera_synthia[3] = 96.000000 camera_synthia[4] = 320 camera_synthia[5] = 192 for c in range(2): cameras.append(camera_synthia) continue camera_tanktemple = np.zeros(6) camera_tanktemple[0] = 0.7 camera_tanktemple[1] = 0.7 camera_tanktemple[2] = 0.5 camera_tanktemple[3] = 0.5 camera_tanktemple[4] = 1 camera_tanktemple[5] = 1 for c in range(2): cameras.append(camera_tanktemple) continue for c in range(2): cameras.append(camera) continue dataset = InferenceDataset(options, config, image_list=image_list, camera=cameras) elif options.dataset == 'selected': image_list = glob.glob('test/selected_images/*_image_0.png') image_list = [ filename for filename in image_list if '63_image' not in filename and '77_image' not in filename ] + [ filename for filename in image_list if '63_image' in filename or '77_image' in filename ] camera = np.zeros(6) camera[0] = 587 camera[1] = 587 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 dataset = InferenceDataset(options, config, image_list=image_list, camera=camera) elif options.dataset == 'comparison': image_list = [ 'test/comparison/' + str(index) + '_image_0.png' for index in [65, 11, 24] ] camera = np.zeros(6) camera[0] = 587 camera[1] = 587 camera[2] = 320 camera[3] = 240 camera[4] = 640 camera[5] = 480 dataset = InferenceDataset(options, config, image_list=image_list, camera=camera) elif 'inference' in options.dataset: image_list = glob.glob(options.customDataFolder + '/*.png') + glob.glob(options.customDataFolder + '/*.jpg') if os.path.exists(options.customDataFolder + '/camera.txt'): camera = np.zeros(6) with open(options.customDataFolder + '/camera.txt', 'r') as f: for line in f: values = [ float(token.strip()) for token in line.split(' ') if token.strip() != '' ] for c in range(6): camera[c] = values[c] continue break pass else: camera = [ filename.replace('.png', '.txt').replace('.jpg', '.txt') for filename in image_list ] pass dataset = InferenceDataset(options, config, image_list=image_list, camera=camera) pass print('the number of images', len(dataset)) dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1) epoch_losses = [] data_iterator = tqdm(dataloader, total=len(dataset)) specified_suffix = options.suffix with torch.no_grad(): detectors = [] for method in options.methods: if method == 'w': options.suffix = 'pair_' + specified_suffix if specified_suffix != '' else 'pair' detectors.append(('warping', PlaneRCNNDetector(options, config, modelType='pair'))) elif method == 'b': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('basic', PlaneRCNNDetector(options, config, modelType='pair'))) elif method == 'o': options.suffix = 'occlusion_' + specified_suffix if specified_suffix != '' else 'occlusion' detectors.append(('occlusion', PlaneRCNNDetector(options, config, modelType='occlusion'))) elif method == 'p': detectors.append( ('planenet', PlaneNetDetector(options, config))) elif method == 'e': detectors.append( ('planerecover', PlaneRecoverDetector(options, config))) elif method == 't': if 'gt' in options.suffix: detectors.append( ('manhattan_gt', TraditionalDetector(options, config, 'manhattan_gt'))) else: detectors.append( ('manhattan_pred', TraditionalDetector(options, config, 'manhattan_pred'))) pass elif method == 'n': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('non_planar', DepthDetector(options, config, modelType='np'))) elif method == 'r': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('refine', PlaneRCNNDetector(options, config, modelType='refine'))) elif method == 's': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append( ('refine_single', PlaneRCNNDetector(options, config, modelType='refine_single'))) elif method == 'f': options.suffix = specified_suffix if specified_suffix != '' else '' detectors.append(('final', PlaneRCNNDetector(options, config, modelType='final'))) pass continue pass if not options.debug: for method_name in [detector[0] for detector in detectors]: os.system('rm ' + options.test_dir + '/*_' + method_name + '.png') continue pass all_statistics = [] for name, detector in detectors: statistics = [[], [], [], []] for sampleIndex, sample in enumerate(data_iterator): if options.testingIndex >= 0 and sampleIndex != options.testingIndex: if sampleIndex > options.testingIndex: break continue input_pair = [] camera = sample[30][0].cuda() for indexOffset in [ 0, ]: images, image_metas, rpn_match, rpn_bbox, gt_class_ids, gt_boxes, gt_masks, gt_parameters, gt_depth, extrinsics, planes, gt_segmentation = sample[ indexOffset + 0].cuda(), sample[indexOffset + 1].numpy(), sample[ indexOffset + 2].cuda(), sample[indexOffset + 3].cuda(), sample[ indexOffset + 4].cuda(), sample[indexOffset + 5].cuda(), sample[ indexOffset + 6].cuda(), sample[indexOffset + 7].cuda( ), sample[indexOffset + 8].cuda(), sample[ indexOffset + 9].cuda(), sample[ indexOffset + 10].cuda(), sample[indexOffset + 11].cuda() masks = ( gt_segmentation == torch.arange(gt_segmentation.max() + 1).cuda().view(-1, 1, 1)).float() input_pair.append({ 'image': images, 'depth': gt_depth, 'bbox': gt_boxes, 'extrinsics': extrinsics, 'segmentation': gt_segmentation, 'camera': camera, 'plane': planes[0], 'masks': masks, 'mask': gt_masks }) continue if sampleIndex >= options.numTestingImages: break with torch.no_grad(): detection_pair = detector.detect(sample) pass if options.dataset == 'rob': depth = detection_pair[0]['depth'].squeeze().detach().cpu( ).numpy() os.system('rm ' + image_list[sampleIndex].replace('color', 'depth')) depth_rounded = np.round(depth * 256) depth_rounded[np.logical_or(depth_rounded < 0, depth_rounded >= 256 * 256)] = 0 cv2.imwrite( image_list[sampleIndex].replace('color', 'depth').replace( 'jpg', 'png'), depth_rounded.astype(np.uint16)) continue if 'inference' not in options.dataset: for c in range(len(input_pair)): evaluateBatchDetection( options, config, input_pair[c], detection_pair[c], statistics=statistics, printInfo=options.debug, evaluate_plane=options.dataset == '') continue else: for c in range(len(detection_pair)): np.save( options.test_dir + '/' + str(sampleIndex % 500) + '_plane_parameters_' + str(c) + '.npy', detection_pair[c]['detection'][:, 6:9]) np.save( options.test_dir + '/' + str(sampleIndex % 500) + '_plane_masks_' + str(c) + '.npy', detection_pair[c]['masks'][:, 80:560]) continue pass if sampleIndex < 30 or options.debug or options.dataset != '': visualizeBatchPair(options, config, input_pair, detection_pair, indexOffset=sampleIndex % 500, suffix='_' + name + options.modelType, write_ply=options.testingIndex >= 0, write_new_view=options.testingIndex >= 0 and 'occlusion' in options.suffix) pass if sampleIndex >= options.numTestingImages: break continue if 'inference' not in options.dataset: options.keyname = name printStatisticsDetection(options, statistics) all_statistics.append(statistics) pass continue if 'inference' not in options.dataset: if options.debug and len(detectors) > 1: all_statistics = np.concatenate([ np.arange(len(all_statistics[0][0])).reshape((-1, 1)), ] + [np.array(statistics[3]) for statistics in all_statistics], axis=-1) print(all_statistics.astype(np.int32)) pass if options.testingIndex == -1: np.save('logs/all_statistics.npy', all_statistics) pass pass return
# Root directory of the project ROOT_DIR = os.path.abspath("../") sys.path.append(ROOT_DIR) # To find local version of the library # Logging confg logging.basicConfig(level=logging.DEBUG,handlers=[ logging.FileHandler("{0}/{1}.log".format("/logs", "classifierservice-flask")), logging.StreamHandler()]) ############################################################ # Configurations # Inherits from config.py ############################################################ from config import InferenceConfig config = InferenceConfig() # Create model object in inference mode. module = __import__(config.MODEL_MODULE, fromlist=[config.MODEL_CLASS]) my_class = getattr(module,config.MODEL_CLASS) model = my_class(config) #Make a prediction before starting the server (First prediction takes longer) data=config.MODEL_SAMPLE_INPUT classification=model.predict(data) logging.info('Model and weight have been loaded.') def run_infer_content(data): #logging.info('Load data: %s',data) if isinstance(data,str):
############################################################################### # Load image ############################################################################### im_path = str(TRAIN_IMAGES_DIR / args.image) print(f"Running on image '{args.image}'.") original_im = cv2.imread(im_path) original_im = cv2.cvtColor(original_im, cv2.COLOR_BGR2RGB) im = original_im.copy() ############################################################################### # Detection ############################################################################### steel_config = InferenceConfig() model = MaskRCNN(mode="inference", config=steel_config, model_dir=str(MODEL_DIR)) # Run the detection pipeline # images: List of images, potentially of different sizes. # Returns a list of dicts, one dict per image. The dict contains: # rois : [N, (y1, x1, y2, x2)] detection bounding boxes # class_ids : [N] int class IDs # scores : [N] float probability scores for the class IDs # masks : [H, W, N] instance binary masks results = model.detect(images=[im], verbose=1) r = results[0]
def __init__(self): super().__init__() model_config = InferenceConfig() self.preprocess_obj = ForwardModel(model_config)
def __init__(self, config=None): if config == None: config = InferenceConfig()