Пример #1
0
def all_init(args):
    ''' Initializing the state and the configuration. '''

    C = Config(lite=False, config_path=args.config_path)
    S = State(mouse_track=args.mouse_track, exec_action=args.exec_action)

    start_key_listener(S)
    landmark_list = landmarkList_pb2.LandmarkList()

    return C, S, landmark_list
Пример #2
0
class SegDetectorRepresenter(Configurable):
    thresh = State(default=0.3)
    box_thresh = State(default=0.7)
    max_candidates = State(default=100)
    dest = State(default='binary')

    def __init__(self, cmd={}, **kwargs):
        self.load_all(**kwargs)
        self.min_size = 3
        self.scale_ratio = 0.4
        if 'debug' in cmd:
            self.debug = cmd['debug']
        if 'thresh' in cmd:
            self.thresh = cmd['thresh']
        if 'box_thresh' in cmd:
            self.box_thresh = cmd['box_thresh']
        if 'dest' in cmd:
            self.dest = cmd['dest']

    def represent(self, batch, _pred, is_output_polygon=False):
        '''
        batch: (image, polygons, ignore_tags
        batch: a dict produced by dataloaders.
            image: tensor of shape (N, C, H, W).
            polygons: tensor of shape (N, K, 4, 2), the polygons of objective regions.
            ignore_tags: tensor of shape (N, K), indicates whether a region is ignorable or not.
            shape: the original shape of images.
            filename: the original filenames of images.
        pred:
            binary: text region segmentation map, with shape (N, 1, H, W)
            thresh: [if exists] thresh hold prediction with shape (N, 1, H, W)
            thresh_binary: [if exists] binarized with threshhold, (N, 1, H, W)
        '''
        images = batch['image']
        if isinstance(_pred, dict):
            pred = _pred[self.dest]
        else:
            pred = _pred
        segmentation = self.binarize(pred)
        boxes_batch = []
        scores_batch = []
        for batch_index in range(images.size(0)):
            height, width = batch['shape'][batch_index]
            if is_output_polygon:
                boxes, scores = self.polygons_from_bitmap(
                    pred[batch_index], segmentation[batch_index], width,
                    height)
            else:
                boxes, scores = self.boxes_from_bitmap(
                    pred[batch_index], segmentation[batch_index], width,
                    height)
            boxes_batch.append(boxes)
            scores_batch.append(scores)
        return boxes_batch, scores_batch

    def binarize(self, pred):
        return pred > self.thresh

    def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
            whose values are binarized as {0, 1}
        '''

        assert _bitmap.size(0) == 1
        bitmap = _bitmap.cpu().numpy()[0]  # The first channel
        pred = pred.cpu().detach().numpy()[0]
        height, width = bitmap.shape
        boxes = []
        scores = []

        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

        for contour in contours[:self.max_candidates]:
            epsilon = 0.01 * cv2.arcLength(contour, True)
            approx = cv2.approxPolyDP(contour, epsilon, True)
            points = approx.reshape((-1, 2))
            if points.shape[0] < 4:
                continue
            # _, sside = self.get_mini_boxes(contour)
            # if sside < self.min_size:
            #     continue
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            if points.shape[0] > 2:
                box = self.unclip(points, unclip_ratio=2.0)
                if len(box) > 1:
                    continue
            else:
                continue
            box = box.reshape(-1, 2)
            _, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
            if sside < self.min_size + 2:
                continue

            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0,
                                dest_width)
            box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0,
                                dest_height)
            boxes.append(box.tolist())
            scores.append(score)
        return boxes, scores

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
            whose values are binarized as {0, 1}
        '''

        assert _bitmap.size(0) == 1
        bitmap = _bitmap.cpu().numpy()[0]  # The first channel
        pred = pred.cpu().detach().numpy()[0]
        height, width = bitmap.shape
        contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
                                       cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
        num_contours = min(len(contours), self.max_candidates)
        boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
        scores = np.zeros((num_contours, ), dtype=np.float32)

        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)
            if not isinstance(dest_width, int):
                dest_width = dest_width.item()
                dest_height = dest_height.item()

            box[:, 0] = np.clip(np.round(box[:, 0] / width * dest_width), 0,
                                dest_width)
            box[:, 1] = np.clip(np.round(box[:, 1] / height * dest_height), 0,
                                dest_height)
            boxes[index, :, :] = box.astype(np.int16)
            scores[index] = score
        return boxes, scores

    def unclip(self, box, unclip_ratio=1.5):
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
Пример #3
0
def main(use_imu=False):
    """Main program
    """

    # Create imu handle
    if use_imu:
        imu = IMU(port="/dev/ttyACM0")
        imu.flush_buffer()

    # Create controller and user input handles
    controller = Controller(
        config,
        solver.inverse_kinematics_body,
    )
    state = State()
    print("Creating joystick listener...")
    joystick_interface = JoystickInterface(config)
    print("Done.")

    last_loop = time.time()

    print("Summary of gait parameters:")
    print("overlap time: ", config.overlap_time)
    print("swing time: ", config.swing_time)
    print("z clearance: ", config.z_clearance)
    print("x shift: ", config.x_shift)

    # exit()

    # Wait until the activate button has been pressed
    while True:
        print("Waiting for L1 to activate robot.")
        while True:
            # break
            command = joystick_interface.get_command(state, True)
            # print(command)
            # joystick_interface.set_color(config.ps4_deactivated_color)
            if command.activate_event == 1:
                break
            time.sleep(0.1)
        print("Robot activated.")
        # joystick_interface.set_color(config.ps4_color)

        while True:
            now = time.time()
            if now - last_loop < config.dt:
                time.sleep(config.dt - (now - last_loop))
            last_loop = time.time()

            # Parse the udp joystick commands and then update the robot controller's parameters
            command = joystick_interface.get_command(state)
            if command.activate_event == 1:
                print("Deactivating Robot")
                break

            # Read imu data. Orientation will be None if no data was available
            quat_orientation = (imu.read_orientation()
                                if use_imu else np.array([1, 0, 0, 0]))
            state.quat_orientation = quat_orientation

            # Step the controller forward by dt
            controller.run(state, command)

            # Update the pwm widths going to the servos
            angles = []
            for leg in state.joint_angles:
                for i in leg:
                    angles.append(int(i / math.pi * 180))
            # print(angles)
            # print(angles, state.joint_angles)
            print(hardware_interface.set_actuator_postions(state.joint_angles))
Пример #4
0
                        '--config',
                        help="Config File Directory",
                        default="",
                        metavar="FILE")
    # path = "/var/log/auth.log"
    # path1 = "/home/harm/test.log"
    # path2 = "/home/harm/test1.log"
    args = parser.parse_args()
    config_path = ''
    if args.config:
        config_path = args.config
    config_file = os.path.join(config_path, config_file_name)
    state_file = os.path.join(config_path, state_file_name)
    output_file = os.path.join(config_path, output_file_name)
    config = Config()
    state = State()
    output = Outputs()
    config.parse_config(config_file)
    state.parse_state(state_file)
    output.parse_outputs(output_file)
    args = parser.parse_args()
    observer = LogObserver(state_file)

    for fl in config.get_files():
        pos = state.pos(fl)
        inode, dev = state.id(fl)
        filters = config.get_filter(fl)
        name = config.get_name(fl)
        retention = config.get_retention(fl)
        out = output.get_output(config.get_output(fl))
Пример #5
0
def main():
    ''' Main '''

    # using None because arguments are irrelevant
    S = State(None, None)

    # setup socket
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

    HOST = '127.0.0.1'
    PORT = 5556
    sock.bind((HOST, PORT))
    sock.listen(1)

    landmark_list = landmarkList_pb2.LandmarkList()

    print("Waiting for keypoint generator..")
    # Establish connection
    conn, addr = sock.accept()

    gesture = input(
        "Enter the name of the gesture for which you are capturing data, \
    (a simple description of the gesture you will perform) :\n")

    logging.info(
        "Hold and release the Ctrl key to record one gesture. Hit the Esc key to stop recording."
    )

    path = "gestop/data/dynamic_gestures/" + gesture
    if not os.path.exists(path):
        os.mkdir(path)

    count = 1
    start_key_listener(S)
    keypoint_buffer = []

    while True:
        data = conn.recv(4096)

        # Start recording data
        if S.ctrl_flag:
            landmark_list.ParseFromString(data)
            landmarks = []
            for lmark in landmark_list.landmark:
                landmarks.extend([str(lmark.x), str(lmark.y), str(lmark.z)])

            keypoint_buffer.append(landmarks)

        # if there is data recorded
        if len(keypoint_buffer) != 0 and not S.ctrl_flag:
            fname = path + "/" + gesture + str(count) + ".txt"
            lmark_str = ''
            for i in keypoint_buffer:
                # verifying data quality
                if '0.0' in i:
                    lmark_str = ''
                    break
                lmark_str += ' '.join(i) + '\n'

            if lmark_str != '':
                with open(fname, 'w') as f:
                    f.write(lmark_str)

                logging.info(
                    "Gesture has been successfully recorded in {0}. Sequence len: {1}"
                    .format(fname, str(len(keypoint_buffer))))
                count += 1
            else:
                logging.info(
                    "Data was not recorded properly, not written to file.")
            # Empty the buffer
            keypoint_buffer = []

        if threading.active_count() == 1:
            break

    conn.close()
    sock.close()