Пример #1
0
    def initial_finetune(self, img, detection_box):
        self.stopwatch.start('initial_finetune')
        t = time.time()

        # generate samples
        pos_num, neg_num = ADNetConf.g()['initial_finetune'][
            'pos_num'], ADNetConf.g()['initial_finetune']['neg_num']
        pos_boxes, neg_boxes = detection_box.get_posneg_samples(self.imgwh,
                                                                pos_num,
                                                                neg_num,
                                                                use_whole=True)
        pos_lb_action = BoundingBox.get_action_labels(pos_boxes, detection_box)

        feats = self._get_features([
            commons.extract_region(img, box) for i, box in enumerate(pos_boxes)
        ])
        for box, feat in zip(pos_boxes, feats):
            box.feat = feat
        feats = self._get_features([
            commons.extract_region(img, box) for i, box in enumerate(neg_boxes)
        ])
        for box, feat in zip(neg_boxes, feats):
            box.feat = feat

        # train_fc_finetune_hem
        self._finetune_fc(img, pos_boxes, neg_boxes, pos_lb_action,
                          ADNetConf.get()['initial_finetune']['learning_rate'],
                          ADNetConf.get()['initial_finetune']['iter'])

        self.histories.append((pos_boxes, neg_boxes, pos_lb_action,
                               np.copy(img), self.iteration))
        _logger.info('ADNetRunner.initial_finetune t=%.3f' % t)
        self.stopwatch.stop('initial_finetune')
Пример #2
0
    def __init__(self):
        self.tensor_input = tf.placeholder(tf.float32, shape=(None, 112, 112, 3), name='patch')
        self.tensor_action_history = tf.placeholder(tf.float32, shape=(None, 1, 1, 110), name='action_history')
        self.tensor_lb_action = tf.placeholder(tf.int32, shape=(None, ), name='lb_action')
        self.tensor_lb_class = tf.placeholder(tf.int32, shape=(None, ), name='lb_class')
        self.tensor_is_training = tf.placeholder(tf.bool, name='is_training')
        self.learning_rate_placeholder = tf.placeholder(tf.float32, [], name='learning_rate')

        self.persistent_sess = tf.Session(config=tf.ConfigProto(
            inter_op_parallelism_threads=1,
            intra_op_parallelism_threads=1
        ))

        self.adnet = ADNetwork(self.learning_rate_placeholder)
        self.adnet.create_network(self.tensor_input, self.tensor_lb_action, self.tensor_lb_class, self.tensor_action_history, self.tensor_is_training)
        if 'ADNET_MODEL_PATH' in os.environ.keys():
            self.adnet.read_original_weights(self.persistent_sess, os.environ['ADNET_MODEL_PATH'])
        else:
            self.adnet.read_original_weights(self.persistent_sess)

        self.action_histories = np.array([0] * ADNetConf.get()['action_history'], dtype=np.int8)
        print("self.action_histories >>", ADNetConf.get()['action_history'])
        self.action_histories_old = np.array([0] * ADNetConf.get()['action_history'], dtype=np.int8)
        self.histories = []
        self.iteration = 0
        self.imgwh = None

        self.callback_redetection = self.redetection_by_sampling
        self.failed_cnt = 0
        self.latest_score = 0

        self.stopwatch = StopWatchManager()
Пример #3
0
    def initial_finetune(self, img, detection_box):

        # print("Start initial_finetune1")
        # generate samples
        pos_num, neg_num = ADNetConf.g()['initial_finetune'][
            'pos_num'], ADNetConf.g()['initial_finetune']['neg_num']
        # print("Ending initial_finetune1")
        pos_boxes, neg_boxes = detection_box.get_posneg_samples(self.imgwh,
                                                                pos_num,
                                                                neg_num,
                                                                use_whole=True)
        # print("Ending initial_finetune133")
        pos_lb_action = BoundingBox.get_action_labels(pos_boxes, detection_box)
        # print("Ending initial_finetune44")

        feats = self._get_features([
            commons.extract_region(img, box) for i, box in enumerate(pos_boxes)
        ])
        for box, feat in zip(pos_boxes, feats):
            box.feat = feat
        feats = self._get_features([
            commons.extract_region(img, box) for i, box in enumerate(neg_boxes)
        ])
        for box, feat in zip(neg_boxes, feats):
            box.feat = feat

        # print("Ending initial_finetune2")
        # train_fc_finetune_hem
        self._finetune_fc(img, pos_boxes, neg_boxes, pos_lb_action,
                          ADNetConf.get()['initial_finetune']['learning_rate'],
                          ADNetConf.get()['initial_finetune']['iter'])

        self.histories.append((pos_boxes, neg_boxes, pos_lb_action,
                               np.copy(img), self.iteration))
Пример #4
0
    def do_action(self, imgwh, action_idx):
        action_ratios = tuple(
            [ADNetConf.get()['action_move'][x] for x in 'xywh'])

        if action_idx < 8:
            deltas_xy = self.wh * action_ratios[:2]
            deltas_xy.max(1)
            actual_deltas = ADNetwork.ACTIONS[action_idx][:2] * (deltas_xy.x,
                                                                 deltas_xy.y)
            moved_xy = self.xy + actual_deltas
            new_box = BoundingBox(moved_xy.x, moved_xy.y, self.wh.x, self.wh.y)
        elif action_idx == 8:
            new_box = BoundingBox(self.xy.x, self.xy.y, self.wh.x, self.wh.y)
        else:
            deltas_wh = self.wh * action_ratios[2:]
            deltas_wh.max(2)
            deltas_wh_scaled = ADNetwork.ACTIONS[action_idx][2:] * (
                deltas_wh.x, deltas_wh.y)
            moved_xy = self.xy + -1 * deltas_wh_scaled / 2
            moved_wh = self.wh + deltas_wh_scaled

            new_box = BoundingBox(moved_xy.x, moved_xy.y, moved_wh.x,
                                  moved_wh.y)

        if imgwh:
            new_box.fit_image(imgwh)
        return new_box
Пример #5
0
def extract_region(img, bbox):
    xy_center = bbox.xy + bbox.wh * 0.5

    wh = bbox.wh * ADNetConf.get()['predict']['roi_zoom']
    xy = xy_center - wh * 0.5
    xy.x = max(xy.x, 0)
    xy.y = max(xy.y, 0)

    # crop and resize
    crop = img[xy.y:xy.y+wh.y, xy.x:xy.x+wh.x, :]
    resize = cv2.resize(crop, (112, 112))
    return resize
Пример #6
0
    def get_action_label(sample, gt_box):
        ious = []
        for i in range(ADNetwork.NUM_ACTIONS):
            moved_box = sample.do_action(imgwh=None, action_idx=i)
            iou = gt_box.iou(moved_box)
            ious.append(iou)

        if ious[ADNetwork.ACTION_IDX_STOP] > ADNetConf.get(
        )['predict']['stop_iou']:
            return ADNetwork.ACTION_IDX_STOP
        if max(ious[:-2]) * 0.99999 <= ious[ADNetwork.ACTION_IDX_STOP]:
            return np.argmax(ious)
            # return random.choice([i for i, x in enumerate(ious) if x >= max(ious)])
        return np.argmax(ious[:-2])
Пример #7
0
            whole_samples = []

        # print("whole_samples::")
        pos_samples = []
        for _ in range(pos_size):
            pos_samples.append(random.choice(gaussian_samples))

        neg_candidates = uniform_samples + whole_samples
        neg_samples = []
        for _ in range(neg_size):
            neg_samples.append(random.choice(neg_candidates))
        return pos_samples, neg_samples


if __name__ == '__main__':
    ADNetConf.get('./conf/large.yaml')

    # iou test
    box_a = BoundingBox(0, 0, 100, 100)
    box_b = BoundingBox(0, 0, 50, 10)
    assert box_a.iou(box_b) == 0.05

    box_a = BoundingBox(0, 0, 10, 10)
    box_b = BoundingBox(5, 7, 7, 10)
    assert 0.096 < box_a.iou(box_b) < 0.097

    # random generator test
    gt_box = BoundingBox.read_vid_gt('./data/BlurCar2/')[0]
    gt_box.wh.x = gt_box.wh.y = 30

    imgpath = os.path.join('./data/BlurCar2/', 'img', '0001.jpg')
Пример #8
0
    def tracking(self, img, curr_bbox):
        self.iteration += 1
        is_tracked = True
        boxes = []
        self.latest_score = -1
        self.stopwatch.start('tracking.do_action')
        for track_i in range(ADNetConf.get()['predict']['num_action']):
            patch = commons.extract_region(img, curr_bbox)

            # forward with image & action history
            actions, classes = self.persistent_sess.run(
                [self.adnet.layer_actions, self.adnet.layer_scores],
                feed_dict={
                    self.adnet.input_tensor: [patch],
                    self.adnet.action_history_tensor:
                    [commons.onehot_flatten(self.action_histories)],
                    self.tensor_is_training:
                    False
                })

            latest_score = classes[0][1]
            if latest_score < ADNetConf.g()['predict']['thresh_fail']:
                is_tracked = False
                self.action_histories_old = np.copy(self.action_histories)
                self.action_histories = np.insert(self.action_histories, 0,
                                                  12)[:-1]
                break
            else:
                self.failed_cnt = 0
            self.latest_score = latest_score

            # move box
            action_idx = np.argmax(actions[0])
            self.action_histories = np.insert(self.action_histories, 0,
                                              action_idx)[:-1]
            prev_bbox = curr_bbox
            curr_bbox = curr_bbox.do_action(self.imgwh, action_idx)
            if action_idx != ADNetwork.ACTION_IDX_STOP:
                if prev_bbox == curr_bbox:
                    print('action idx', action_idx)
                    print(prev_bbox)
                    print(curr_bbox)
                    raise Exception('box not moved.')

            # oscillation check
            if action_idx != ADNetwork.ACTION_IDX_STOP and curr_bbox in boxes:
                action_idx = ADNetwork.ACTION_IDX_STOP

            if action_idx == ADNetwork.ACTION_IDX_STOP:
                break

            boxes.append(curr_bbox)
        self.stopwatch.stop('tracking.do_action')

        # redetection when tracking failed
        new_score = 0.0
        if not is_tracked:
            self.failed_cnt += 1
            # run redetection callback function
            new_box, new_score = self.callback_redetection(curr_bbox, img)
            if new_box is not None:
                curr_bbox = new_box
                patch = commons.extract_region(img, curr_bbox)
            _logger.debug('redetection success=%s' %
                          (str(new_box is not None)))

        # save samples
        if is_tracked or new_score > ADNetConf.g(
        )['predict']['thresh_success']:
            self.stopwatch.start('tracking.save_samples.roi')
            imgwh = Coordinate.get_imgwh(img)
            pos_num, neg_num = ADNetConf.g(
            )['finetune']['pos_num'], ADNetConf.g()['finetune']['neg_num']
            pos_boxes, neg_boxes = curr_bbox.get_posneg_samples(
                imgwh,
                pos_num,
                neg_num,
                use_whole=False,
                pos_thresh=ADNetConf.g()['finetune']['pos_thresh'],
                neg_thresh=ADNetConf.g()['finetune']['neg_thresh'],
                uniform_translation_f=2,
                uniform_scale_f=5)
            self.stopwatch.stop('tracking.save_samples.roi')
            self.stopwatch.start('tracking.save_samples.feat')
            feats = self._get_features([
                commons.extract_region(img, box)
                for i, box in enumerate(pos_boxes)
            ])
            for box, feat in zip(pos_boxes, feats):
                box.feat = feat
            feats = self._get_features([
                commons.extract_region(img, box)
                for i, box in enumerate(neg_boxes)
            ])
            for box, feat in zip(neg_boxes, feats):
                box.feat = feat
            pos_lb_action = BoundingBox.get_action_labels(pos_boxes, curr_bbox)
            self.histories.append((pos_boxes, neg_boxes, pos_lb_action,
                                   np.copy(img), self.iteration))

            # clear old ones
            self.histories = self.histories[-ADNetConf.g(
            )['finetune']['long_term']:]
            self.stopwatch.stop('tracking.save_samples.feat')

        # online finetune
        if self.iteration % ADNetConf.g(
        )['finetune']['interval'] == 0 or is_tracked is False:
            img_pos, img_neg = [], []
            pos_boxes, neg_boxes, pos_lb_action = [], [], []
            pos_term = 'long_term' if is_tracked else 'short_term'
            for i in range(ADNetConf.g()['finetune'][pos_term]):
                if i >= len(self.histories):
                    break
                pos_boxes.extend(self.histories[-(i + 1)][0])
                pos_lb_action.extend(self.histories[-(i + 1)][2])
                img_pos.extend([self.histories[-(i + 1)][3]] *
                               len(self.histories[-(i + 1)][0]))
            for i in range(ADNetConf.g()['finetune']['short_term']):
                if i >= len(self.histories):
                    break
                neg_boxes.extend(self.histories[-(i + 1)][1])
                img_neg.extend([self.histories[-(i + 1)][3]] *
                               len(self.histories[-(i + 1)][1]))
            self.stopwatch.start('tracking.online_finetune')
            self._finetune_fc((img_pos, img_neg), pos_boxes, neg_boxes,
                              pos_lb_action,
                              ADNetConf.get()['finetune']['learning_rate'],
                              ADNetConf.get()['finetune']['iter'])
            _logger.debug('finetuned')
            self.stopwatch.stop('tracking.online_finetune')

        visualizer.image('patch', patch)
        # cv2.imshow('patch', patch)
        return curr_bbox
Пример #9
0
                    [commons.onehot_flatten(self.action_histories_old)] *
                    len(c_batch),
                    self.tensor_is_training:
                    False
                })
            scores.extend([x[1] for x in classes])
        top5_idx = [
            i[0] for i in sorted(
                enumerate(scores), reverse=True, key=lambda x: x[1])
        ][:5]
        mean_score = sum([scores[x] for x in top5_idx]) / 5.0
        if mean_score >= self.latest_score:
            mean_box = candidates[0]
            for i in range(1, 5):
                mean_box += candidates[i]
            return mean_box / 5.0, mean_score
        return None, 0.0

    def __del__(self):
        self.persistent_sess.close()


if __name__ == '__main__':
    ADNetConf.get('./conf/repo.yaml')

    random.seed(1258)
    np.random.seed(1258)
    tf.set_random_seed(1258)

    fire.Fire(ADNetRunner)
Пример #10
0
    def __init__(self, tracker_request, tracker_response):

        # Topic names
        self.tracker_request = tracker_request
        self.tracker_response = tracker_response
        # Tracker initializers  './conf/repo.yaml'
        ADNetConf.get(conf_yaml_path)
        self.tensor_input = tf.placeholder(tf.float32,
                                           shape=(None, 112, 112, 3),
                                           name='patch')
        self.tensor_action_history = tf.placeholder(tf.float32,
                                                    shape=(None, 1, 1, 110),
                                                    name='action_history')
        self.tensor_lb_action = tf.placeholder(tf.int32,
                                               shape=(None, ),
                                               name='lb_action')
        self.tensor_lb_class = tf.placeholder(tf.int32,
                                              shape=(None, ),
                                              name='lb_class')
        self.tensor_is_training = tf.placeholder(tf.bool, name='is_training')
        self.learning_rate_placeholder = tf.placeholder(tf.float32, [],
                                                        name='learning_rate')
        self.persistent_sess = tf.Session(config=tf.ConfigProto(
            inter_op_parallelism_threads=1, intra_op_parallelism_threads=1))

        self.adnet = ADNetwork(self.learning_rate_placeholder)
        self.adnet.create_network(self.tensor_input, self.tensor_lb_action,
                                  self.tensor_lb_class,
                                  self.tensor_action_history,
                                  self.tensor_is_training)
        if 'ADNET_MODEL_PATH' in os.environ.keys():
            self.adnet.read_original_weights(self.persistent_sess,
                                             os.environ['ADNET_MODEL_PATH'])
        else:
            self.adnet.read_original_weights(self.persistent_sess)

        # print("self.action_histories >>", ADNetConf.get())
        self.action_histories = np.array([0] *
                                         ADNetConf.get()['action_history'],
                                         dtype=np.int8)
        self.action_histories_old = np.array([0] *
                                             ADNetConf.get()['action_history'],
                                             dtype=np.int8)
        self.histories = []
        self.iteration = 0
        self.imgwh = None

        self.callback_redetection = self.redetection_by_sampling

        print("Tracker initialization Done!!")

        # Initialize eCAL
        ecal.initialize(sys.argv, "object tracking")
        # Read the JSON files
        with open(topics_json_path) as data_file:
            self.json_data = json.load(data_file)
        # Define the callbacks for publisher subscriber
        self.initialize_subscr_topics()
        self.initialize_publsr_topics()

        # The callbacks will redirect to the tracker function and publish predicted ROI
        self.define_subscr_callbacks()