def init(**kwargs): """Initialise OP2: select the backend and potentially other configuration options. :arg backend: Set the hardware-specific backend. Current choices are ``"sequential"``, ``"openmp"``, ``"opencl"`` and ``"cuda"``. :arg debug: The level of debugging output. :arg comm: The MPI communicator to use for parallel communication, defaults to `MPI_COMM_WORLD` .. note:: Calling ``init`` again with a different backend raises an exception. Changing the backend is not possible. Calling ``init`` again with the same backend or not specifying a backend will update the configuration. Calling ``init`` after ``exit`` has been called is an error and will raise an exception. """ backend = backends.get_backend() if backend == 'pyop2.finalised': raise RuntimeError("Calling init() after exit() is illegal.") if 'backend' in kwargs and backend not in ('pyop2.void', 'pyop2.' + kwargs['backend']): raise RuntimeError("Changing the backend is not possible once set.") cfg.configure(**kwargs) set_log_level(cfg['log_level']) if backend == 'pyop2.void': backends.set_backend(cfg.backend) backends._BackendSelector._backend._setup() if 'comm' in kwargs: backends._BackendSelector._backend.MPI.comm = kwargs['comm'] global MPI MPI = backends._BackendSelector._backend.MPI # noqa: backend override
def save_reports(filenames): import csv import persistence as p from configuration import configure #open DB connection config = configure() conn = p.open_connection(config) cursor = conn.cursor() #iterate through the reports for f in filenames: print f reader = csv.DictReader(open(f), delimiter='\t') for row in reader: print row myrow = {'sku': row['SKU'], 'end_date': row['End Date'], 'customer_currency': row['Customer Currency'], 'begin_date' : row['Begin Date'], 'developer_proceeds' : row['Developer Proceeds'], 'promo_code': row['Promo Code'], 'title': row['Title'], 'parent_identifier': row['Parent Identifier'], 'customer_price': row['Customer Price'], 'period': row['Period'], 'currency_of_proceeds':row['Currency of Proceeds'], 'type_identifier': row['Product Type Identifier'], 'provider_country' : row['Provider Country'], 'country_code': row['Country Code'], 'apple_identifier': row['Apple Identifier'], 'version' : row['Version'], 'provider' : row['Provider'], 'units' : row['Units'], 'subscription' : row['Subscription'], 'developer' : row['Developer'], 'publisher_name': get_publisher_name(row['Title']), 'publisher_id': get_publisher_id(row['Title'])} p.insert(cursor, 'itunes', myrow.keys(), myrow) conn.commit() cursor.close()
import numpy as np from itertools import cycle from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import label_binarize from scipy import interp from sklearn.model_selection import train_test_split from configuration import configure from matplotlib import pyplot as plt from evalMetrics import evalMetric from sklearn.multiclass import OneVsRestClassifier # importing the dataset and pre-procesing it datasetName = 'winequality-white.csv' cnfg = configure(datasetName) dataset = cnfg.binaryClassConversion('quality', 3) X = dataset[[ 'fixed acidity', 'volatile acidity', 'citric acid', 'residual sugar', 'chlorides', 'free sulfur dioxide', 'total sulfur dioxide', 'density', 'pH', 'sulphates', 'alcohol' ]] y = dataset['taste'] y = label_binarize(y, classes=[-1, 0, 1]) n_classes = y.shape[1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
def phase2_main(): q0, qh, map_size, obstacles, num_obs = [], [], [], [], 0 manual_input = int( input( "Would you like to use an input file? (Choose 0) or manual input mode? (Choose 1): " )) while manual_input != 0 and manual_input != 1: print("Invalid input, please try again...") manual_input = int( input( "Would you like to use an input file? (Choose 0) or manual input mode? (Choose 1): " )) if not manual_input: filepath = input("Please enter your file name ('sample.txt'): ") map_sz, obstacles = readInputFile(filepath) q0 = [0, 0, 0] qh = [map_sz[0], map_sz[1], map_sz[2]] map_size = [q0[0], q0[1], q0[2], qh[0], qh[1], qh[2]] num_obs = len(obstacles) elif manual_input: map_size, obstacles, q0, qh = user_input() num_obs = len(obstacles) # takeoff_h = math.ceil(map_size[2]/4) algorithm = int( input( "Would you like to use an A-star algorithm? (Choose 0) or Rapidly Exploring Random Tree Star(aka RRT*) ? (Choose 1): " )) tStart = time.time() print("Map Size (x, y, z, w, l, h):") print(map_size) print("obstacles (x, y, z, w, l, h):") print(obstacles) print("Initial Position (q0):") print(q0) print("Final Position (qh)") print(qh) # Normalizing for the quadrotor size ------------------------------------------------------------------------------ norm_quad = 0.029 for i in range(len(map_size)): map_size[i] = math.ceil(map_size[i] / norm_quad) # normalize for robot size for i in range(len(obstacles)): for j in range(len(obstacles[i])): obstacles[i][j] = math.ceil(obstacles[i][j] / norm_quad) # normalize for robot size qh[0], qh[1], qh[2] = math.ceil(qh[0] / norm_quad), math.ceil( qh[1] / norm_quad), math.ceil(qh[2] / norm_quad) takeoff = [] takeoff.append([0, 0, 0]) q0 = [q0[0], q0[1], q0[0] + int(map_size[5] / 5)] takeoff.append(q0) # ----------------------------------------------------------------------------------------------------------------- if (algorithm == 0): # Solve for CSpace and find a feasible path ----------------------------------------------------------------------- config_space, cTime = configure(map_size, obstacles) print("CONFIG DONE") print("Mapping A-Star...") unsamp_waypoints, astar_time = motion_planner( q0, qh, config_space) # A* Algorithm # waypoints = motion(q0, qh, map_size, obstacles) # Probability Tree print("length") print(len(unsamp_waypoints)) sample_rate = 10 # Sample waypoints to smooth path way_len = math.ceil(len(unsamp_waypoints) / sample_rate) waypoints = [[0, 0, 0] for i in range(way_len)] count = 0 for i in range(len(unsamp_waypoints)): if i % sample_rate == 0: waypoints[count] = unsamp_waypoints[i] count += 1 waypoints.append([qh[0], qh[1], qh[2]]) else: print("Mapping RRT-Star...") rrt_time, cTime, waypoints = motion(q0, qh, map_size, obstacles) waypoints = waypoints.tolist() # ----------------------------------------------------------------------------------------------------------------- poly = path3D(waypoints, norm_quad, False, False) tFinal = time.time() totalTime = tFinal - tStart land = [] land.append(waypoints[len(waypoints) - 1]) #land copter at the end of path land.append([ waypoints[len(waypoints) - 1][0], waypoints[len(waypoints) - 1][1], 0 ]) takeoff_points = path3D(takeoff, norm_quad, True, False) landed = path3D(land, norm_quad, False, True) poly_takeoff = takeoff_points.copy() takeoff_points.extend(waypoints) waypoints = takeoff_points.copy() waypoints.extend(landed) poly_takeoff.extend(poly) poly = poly_takeoff.copy() poly.extend(landed) # Times for each portion of code if (algorithm == 0): print("C_space Time: %.4f" % cTime) print("Algorithm Time: %.4f" % astar_time) else: print("C_space Time: %.4f" % cTime) print("Algorithm Time: %.4f" % rrt_time) print("Program Time: %.4f" % totalTime) # BEGIN PLOTTING -------------------------------------------------------------------------------------------------- fig = plt.figure() ax = fig.gca(projection='3d') mx = [map_size[0], map_size[0] + map_size[3]] my = [map_size[1], map_size[1] + map_size[4]] mz = [map_size[2], map_size[2] + map_size[5]] drawRect(ax, mx, my, mz, 'cyan', 'b', 0.08) # Plotting Obstacles for i in range(num_obs): ob_x = [obstacles[i][0], obstacles[i][3] + obstacles[i][0]] ob_y = [obstacles[i][1], obstacles[i][4] + obstacles[i][1]] ob_z = [obstacles[i][2], obstacles[i][5] + obstacles[i][2]] drawRect(ax, ob_x, ob_y, ob_z, 'maroon', 'r', 0.5) # Plotting Chosen Path wx = np.asanyarray([0 for i in range(len(waypoints))], dtype=float) wy = np.asanyarray([0 for i in range(len(waypoints))], dtype=float) wz = np.asanyarray([0 for i in range(len(waypoints))], dtype=float) cx = np.asanyarray([0 for i in range(len(poly))], dtype=float) cy = np.asanyarray([0 for i in range(len(poly))], dtype=float) cz = np.asanyarray([0 for i in range(len(poly))], dtype=float) for i in range(len(waypoints)): wx[i] = waypoints[i][0] wy[i] = waypoints[i][1] wz[i] = waypoints[i][2] # ax.scatter3D(wx[i], wy[i], wz[i], c='b') ax.plot3D(wx, wy, wz, 'black', label='waypoints ') for i in range(len(poly)): cx[i] = poly[i][0] cy[i] = poly[i][1] cz[i] = poly[i][2] ax.plot3D(cx, cy, cz, 'green', label='quadrotor path') #ax.plot3D(dx, dy, dz, c='black',label='desired') ax.legend() ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # Show Final Plot plt.show()
from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from pkl import load_training from pkl import load_testing from pkl import write_predictions import numpy as np from CNN import cnn_model from configuration import configure config = configure() #_________________________________________MAIN_________________________________________ def main(unused_argv): if config.runCNN["make_test_predictions"]: x_test = load_testing("../../data") models = [ { "name": "final","checkpoints": ["model.ckpt-10201","model.ckpt-10301","model.ckpt-10401","model.ckpt-10500","model.ckpt-10501"] }, { "name": "final2","checkpoints": ["model.ckpt-9601","model.ckpt-9701","model.ckpt-9801","model.ckpt-9901","model.ckpt-10000"] }, { "name": "final3","checkpoints": ["model.ckpt-9601","model.ckpt-9701","model.ckpt-9801","model.ckpt-9901","model.ckpt-10000"] }, {
def main(unused_argv): x_train, y_train = load_training("../../data", True) config = configure() split = config.runCNN["split"] size = len(x_train) training_size = int(size - size * split) x_train, y_train = randomize(x_train, y_train) x_valid = x_train[training_size:size] y_valid = y_train[training_size:size] x_train = x_train[0:training_size] y_train = y_train[0:training_size] mnist_classifier = tf.estimator.Estimator( model_fn=cnn_model, model_dir=config.runCNN["model_dir"], config=tf.contrib.learn.RunConfig(save_checkpoints_steps=1000)) if config.runCNN["training"]: epoch = config.runCNN["epochs"] for i in range(epoch): # Create the Estimator train_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": x_train}, y=y_train, batch_size=config.runCNN["batch_size"], num_epochs=None, shuffle=True) mnist_classifier.train( input_fn=train_input_fn, steps=config.runCNN["steps"], ) valid_input_fn = tf.estimator.inputs.numpy_input_fn( x={"x": x_valid}, y=y_valid, num_epochs=1, shuffle=False) mnist_classifier.evaluate(input_fn=valid_input_fn) elif config.runCNN["evaluate"]: valid_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": x_valid}, y=y_valid, num_epochs=1, shuffle=False) mnist_classifier.evaluate(input_fn=valid_input_fn) if config.runCNN["make_test_predictions"]: # Load test data x_test = load_testing("../../data") # Make Predictions predict_input_fn = tf.estimator.inputs.numpy_input_fn(x={"x": x_test}, num_epochs=1, shuffle=False) predictions = list(mnist_classifier.predict(input_fn=predict_input_fn)) predicted_classes = [p["classes"] for p in predictions] # Print them to a file write_predictions("../../output", predicted_classes)
import matplotlib.pyplot as plt from configuration import configure import numpy as np cfg = configure("winequality-white.csv") ds = cfg.getdataset() #box plot ds.plot(kind='box', subplots=False, layout=(5, 3), legend=False, figsize=(30, 15), table=ds.describe()) ax1 = plt.axes() x_axis = ax1.axes.get_xaxis() x_axis.set_visible(False) x_label = x_axis.get_label() x_label.set_visible(False) plt.show() plt.savefig("Charts/" + "BoxwithTable" + "_plot_scores.jpg") #correlation matrix ds_corr = ds.corr() fig = plt.figure(figsize=(15, 15)) ax = fig.add_subplot(111) cax = ax.matshow(ds_corr) fig.colorbar(cax) ticks = np.arange(0, 12, 1) ax.set_xticks(ticks)
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import tensorflow as tf from configuration import configure config = configure().CNN def cnn_model(features, labels, mode): # Input Layer input_layer = tf.reshape(features["x"], [-1, 64, 64, 1]) numConvLayers = len(config["conv_layers"]) conv = [] pool = [] normal = [] for i in range(numConvLayers): inp = None layer = config["conv_layers"][i] if i == 0: inp = input_layer else: inp = normal[i - 1]
import pandas as pd from torch.utils.data import DataLoader from data_loading import create_datasets, SeriesDataset from configuration import configure from TrainESRNN import TrainESRNN from ESRNN_model import ESRNN_model import time from dataset import DatasetTS, data_generator from IPython import embed print('loading config') config = configure('Hourly') data = pd.read_csv('Dataset/actuals_08_16_to_08_18.csv') # extract ts values labels = data.iloc[:,1].values series = label = data.iloc[:,2].values ind = 0 curr_label = labels[0] ts = [] for i, label in enumerate(labels): if label != curr_label: ts.append(series[ind:i]) ind = i curr_label = label data = [] for i, series in enumerate(ts):