def main(unused_argv): vocab = Vocabulary(FLAGS.vocab_path) model_path = '/data-private/nas/src/Multi_Model/AE_MSR2019:10:02:01:29:18/ckp30' model_name = 'ckp' model_config = ModelConfig() train_config = TrainingConfig() val_dataset = build_dataset(model_config.val_tfrecord_list, batch_size=model_config.batch_size, is_training=False) iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes) val_init_op = iterator.make_initializer(val_dataset) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.9 config.intra_op_parallelism_threads = 24 config.inter_op_parallelism_threads = 24 model = Model(model_config=model_config, iterator=iterator, train_config=train_config) sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) vL = tf.trainable_variables() r_saver = tf.train.Saver(var_list=vL, max_to_keep=FLAGS.NUM_EPOCH) r_saver.restore(sess, model_path) print('Model compiled') sess.run(val_init_op) val_pairs = [] while True: try: out_indices, loss1, y = model.eval(sess) print('pred: ', out_indices) print('ground truth: ', y) print('loss: ', loss1) val_total_loss += loss1 print('\n [%d ]' % (i)) for j in range(len(y)): unpadded_out = None if 1 in out_indices[j]: idx_1 = np.where(out_indices[j] == 1)[0][0] unpadded_out = out_indices[j][:idx_1] else: unpadded_out = out_indices[j] idx_1 = np.where(y[j] == 1)[0][0] unpadded_y = y[j][:idx_1] predic = ''.join([vocab.id_to_word[k] for k in unpadded_out]) label = ''.join([vocab.id_to_word[i] for i in unpadded_y]) val_pairs.append((predic, label)) except: break counts, cer = cer_s(val_pairs) print('Current error rate is : %.4f' % cer)
def main(unused_argv): vocab = Vocabulary(FLAGS.vocab_path) model_dir = 'MSR' + datetime.datetime.now().strftime('%Y:%m:%d:%H:%M:%S') model_name = 'ckp' model_config = ModelConfig() train_config = TrainingConfig() train_dataset = build_dataset(model_config.train_tfrecord_list, batch_size=model_config.batch_size, shuffle=True) val_dataset = build_dataset(model_config.val_tfrecord_list, batch_size=model_config.batch_size, is_training=False) iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes) train_init_op = iterator.make_initializer(train_dataset) val_init_op = iterator.make_initializer(val_dataset) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.9 config.intra_op_parallelism_threads = 24 config.inter_op_parallelism_threads = 24 model = Model(model_config=model_config, iterator=iterator, train_config=train_config) sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(max_to_keep=FLAGS.NUM_EPOCH) summary_writer = tf.summary.FileWriter('logs_no_mh/msr' + datetime.datetime.now().strftime('%Y:%m:%d:%H:%M:%S'), graph=sess.graph) print('Model compiled') count = 0 for epoch in range(FLAGS.NUM_EPOCH): print('[Epoch %d] train begin ' % epoch) train_total_loss = 0 sess.run(train_init_op) i = 0 while True: try: loss = model.train(sess) train_total_loss += loss print('\n [%d ] Loss: %.4f' % (i, loss)) if count % 100 == 0: train_summary = model.merge(sess) summary_writer.add_summary(train_summary, count) count += 1 i += 1 except: print('break') break train_loss = train_total_loss / max(i, 1) epoch_summary = tf.Summary(value=[tf.Summary.Value(tag="train_loss", simple_value=train_loss)]) summary_writer.add_summary(epoch_summary, epoch) saver.save(sess, os.path.join(model_dir, model_name + str(epoch))) print('[Epoch %d] train end ' % epoch) print('Epoch %d] eval begin' % epoch) val_total_loss = 0 sess.run(val_init_op) val_pairs = [] i = 0 if epoch > -1: while True: try: out_indices,loss1, y = model.eval(sess) #print('pred: ', out_indices) #print('ground truth: ', y) print('loss: ', loss1) val_total_loss += loss1 print('\n [%d ]' % (i)) for j in range(len(y)): unpadded_out = None if 1 in out_indices[j]: idx_1 = np.where(out_indices[j] == 1)[0][0] unpadded_out = out_indices[j][:idx_1] else: unpadded_out = out_indices[j] idx_1 = np.where(y[j] == 1)[0][0] unpadded_y = y[j][:idx_1] predic = ''.join([vocab.id_to_word[k] for k in unpadded_out]) label = ''.join([vocab.id_to_word[i] for i in unpadded_y]) val_pairs.append((predic, label)) i += 1 except: break avg_loss = val_total_loss / max(i, 1) print("avg_loss",avg_loss) counts, cer = cer_s(val_pairs) summary = tf.Summary(value=[tf.Summary.Value(tag="cer", simple_value=cer), tf.Summary.Value(tag="val_loss", simple_value=avg_loss)]) summary_writer.add_summary(summary, epoch) print('Current error rate is : %.4f' % cer) print('Epoch %d] eval end' % epoch) ############################################################# summary_writer.close()
def main(unused_argv): model_dir = 'SpeechEnhancement' + datetime.datetime.now().strftime( '%Y:%m:%d:%H:%M:%S') model_name = 'ckp' model_config = ModelConfig() train_config = TrainingConfig() train_dataset = build_dataset(model_config.train_tfrecord_list, batch_size=model_config.batch_size, shuffle=True) iterator = tf.data.Iterator.from_structure(train_dataset.output_types, train_dataset.output_shapes) train_init_op = iterator.make_initializer(train_dataset) config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.per_process_gpu_memory_fraction = 0.9 config.intra_op_parallelism_threads = 24 config.inter_op_parallelism_threads = 24 model = Model(model_config=model_config, iterator=iterator, train_config=train_config) sess = tf.Session(config=config) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(max_to_keep=FLAGS.NUM_EPOCH) summary_writer = tf.summary.FileWriter( 'logs_no_mh/ae' + datetime.datetime.now().strftime('%Y:%m:%d:%H:%M:%S'), graph=sess.graph) print('Model compiled') count = 0 for epoch in range(FLAGS.NUM_EPOCH): print('[Epoch %d] train begin ' % epoch) train_total_loss = 0 sess.run(train_init_op) i = 0 while True: try: loss, _ = model.train(sess) train_total_loss += loss print('\n [%d ] Loss: %.4f' % (i, loss)) print('\n dif: %.4f' % diff) if count % 100 == 0: train_summary = model.merge(sess) summary_writer.add_summary(train_summary, count) count += 1 i += 1 except: print('break') break train_loss = train_total_loss / max(i, 1) print("avg_loss", train_loss) epoch_summary = tf.Summary(value=[ tf.Summary.Value(tag="train_loss", simple_value=train_loss) ]) summary_writer.add_summary(epoch_summary, epoch) saver.save(sess, os.path.join(model_dir, model_name + str(epoch))) print('[Epoch %d] train end ' % epoch) ############################################################# summary_writer.close()
matplotlib.use('Agg') import matplotlib.pyplot as plt plt.ioff() from configuration import ModelConfig, TrainingConfig from build_graph import * from data_utils import dataset from vis_utils import visualize_grid FLAGS = None modelName = 'model_ema' PLOT_WEIGHTS_EVERY_EPOCH = 5 configModel = ModelConfig() configTrain = TrainingConfig() training_loss = [] validation_loss = [] validation_accu = [] def train_model_for_one_epoch(iterations, train_x, train_y, model, sess, config, record_train_loss=False): num_images = len(train_x)