Пример #1
0
 def play_round(self):
     logger.info("Starting game round...")
     if np.random.uniform(0, 1) <= 0.5:
         white = self.current
         black = self.best
         w = "current"
         b = "best"
     else:
         white = self.best
         black = self.current
         w = "best"
         b = "current"
     current_board = cboard()
     checkmate = False
     dataset = []
     value = 0
     t = 0.1
     while checkmate == False and current_board.actions() != []:
         dataset.append(copy.deepcopy(ed.encode_board(current_board)))
         print("")
         print(current_board.current_board)
         if current_board.player == 0:
             root = UCT_search(current_board, 777, white, t)
             policy = get_policy(root, t)
             print("Policy: ", policy, "white = %s" % (str(w)))
         elif current_board.player == 1:
             root = UCT_search(current_board, 777, black, t)
             policy = get_policy(root, t)
             print("Policy: ", policy, "black = %s" % (str(b)))
         current_board = do_decode_n_move_pieces(current_board,\
                                                 np.random.choice(np.array([0,1,2,3,4,5,6,7,8]), \
                                                                  p = policy)) # decode move and move piece(s)
         if current_board.check_winner() == True:  # someone wins
             if current_board.player == 0:  # black wins
                 value = -1
             elif current_board.player == 1:  # white wins
                 value = 1
             checkmate = True
     dataset.append(ed.encode_board(current_board))
     if value == -1:
         dataset.append(f"{b} as black wins")
         return b, dataset
     elif value == 1:
         dataset.append(f"{w} as white wins")
         return w, dataset
     else:
         dataset.append("Nobody wins")
         return None, dataset
Пример #2
0
def play_ia(game, options):

	made_moves, convertedMatrix = convert_matrix_to_alpha_zero(game)

	print(convertedMatrix)

	#########################################################################
	# AlphaZero
	#########################################################################
	
	#best_net="c4_current_net_trained2_iter7.pth.tar"
	best_net="c4_current_net_trained_iter8.pth.tar"
	best_net_filename = os.path.join("C:\\Users\\Francesco\\Documents\\2_Schule\\HYU\\HYU-software-engineering-AI\\src_backend\\src\\ai_modules\\AlphaZero_Connect4\\src\\model_data\\", best_net)
	best_cnet = ConnectNet()
	cuda = torch.cuda.is_available()
	if cuda:
		best_cnet.cuda()
	best_cnet.eval()
	checkpoint = torch.load(best_net_filename)
	best_cnet.load_state_dict(checkpoint['state_dict'])
	
	net = best_cnet

	white = None
	black = net
	current_board = cboard()
	current_board.current_board = np.array(convertedMatrix)

	checkmate = False
	dataset = []
	value = 0; t = 0.1; moves_count = made_moves

	moves_count += 1
	dataset.append(copy.deepcopy(ed.encode_board(current_board)))

	print("AI is thinking.............")
	root = UCT_search(current_board,777,black,t)
	policy = get_policy(root, t)

	current_board = do_decode_n_move_pieces(current_board, np.random.choice(np.array([0,1,2,3,4,5,6]), p = policy)) # decode move and move piece(s)

	print(current_board.current_board); print(" ")

	return find_which_move_ai_made(convertedMatrix, current_board.current_board)
	
Пример #3
0
def play_game(net):
    # Asks human what he/she wanna play as
    white = None
    black = None
    while (True):
        play_as = input("What do you wanna play as? (\"O\"/\"X\")? Note: \"O\" starts first, \"X\" starts second\n")
        if play_as == "O":
            black = net; break
        elif play_as == "X":
            white = net; break
        else:
            print("I didn't get that.")
    current_board = cboard()
    checkmate = False
    dataset = []
    value = 0
    t = 0.1
    moves_count = 0
    while not checkmate and current_board.actions() != []:
        t = 1 if moves_count <= 5 else 0.1
        moves_count += 1
        dataset.append(copy.deepcopy(ed.encode_board(current_board)))
        print(current_board.current_board)
        print(" ")
        if current_board.player == 0 and white != None:
            print("AI is thinking........")
            root = UCT_search(current_board,777,white,t)
            policy = get_policy(root, t)
        elif (
            current_board.player == 0
            or current_board.player == 1
            and black is None
        ):
            while(True):
                col = input("Which column do you wanna drop your piece? (Enter 1-7)\n")
                if int(col) in [1,2,3,4,5,6,7]:
                    policy = np.zeros([7], dtype=np.float32); policy[int(col)-1] += 1
                    break
        elif current_board.player == 1:
            print("AI is thinking.............")
            root = UCT_search(current_board,777,black,t)
            policy = get_policy(root, t)
        current_board = do_decode_n_move_pieces(current_board,\
                                                np.random.choice(np.array([0,1,2,3,4,5,6]), \
                                                                 p = policy)) # decode move and move piece(s)
        if current_board.check_winner() == True: # someone wins
            if current_board.player == 0: # black wins
                value = -1
            elif current_board.player == 1: # white wins
                value = 1
            checkmate = True
    dataset.append(ed.encode_board(current_board))
    print(current_board.current_board)
    print(" ")
    if value == -1:
        if play_as == "O":
            dataset.append('AI as black wins')
            print("YOU LOSE!!!!!!!")
        else:
            dataset.append('Human as black wins')
            print("YOU WIN!!!!!!!")
        return "black", dataset
    elif value == 1:
        if play_as == "O":
            dataset.append('Human as white wins')
            print("YOU WIN!!!!!!!!!!!")
        else:
            dataset.append('AI as white wins')
            print("YOU LOSE!!!!!!!")
        return "white", dataset
    else:
        dataset.append("Nobody wins")
        print("DRAW!!!!!")
        return None, dataset