Пример #1
0
def main():
    r"""Main function.
    """
    # arguments
    args = get_args()
    print("Command line arguments:")
    print(args)

    # configurations
    cfg = get_cfg_defaults()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)

    if args.inference:
        update_inference_cfg(cfg)

    cfg.freeze()
    print("Configuration details:")
    print(cfg)

    if not os.path.exists(cfg.DATASET.OUTPUT_PATH):
        print('Output directory: ', cfg.DATASET.OUTPUT_PATH)
        os.makedirs(cfg.DATASET.OUTPUT_PATH)
        save_all_cfg(cfg, cfg.DATASET.OUTPUT_PATH)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Device: ", device)

    mode = 'test' if args.inference else 'train'
    trainer = Trainer(cfg, device, mode, args.checkpoint)
    if args.inference:
        trainer.test()
    else:
        trainer.train()
Пример #2
0
def main():
    r"""Main function.
    """
    # arguments
    args = get_args()
    print("Command line arguments:")
    print(args)

    # configurations
    cfg = get_cfg_defaults()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)

    if args.inference:
        update_inference_cfg(cfg)

    cfg.freeze()
    print("Configuration details:")
    print(cfg)

    if not os.path.exists(cfg.dataset.output_path):
        print('Output directory: ', cfg.dataset.output_path)
        os.makedirs(cfg.dataset.output_path)
        save_all_cfg(cfg, cfg.dataset.output_path)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("Device: ", device)
    cudnn.enabled = True
    cudnn.benchmark = True

    mode = 'test' if args.inference else 'train'
    trainer = Trainer(cfg, device, mode, args.checkpoint)
    if cfg.dataset.DO_CHUNK_TITLE == 0:
        if args.inference:
            trainer.test()
        else:
            trainer.train()
    else:
        trainer.run_chunk(mode)