Пример #1
0
def egros_get_j(S=[], proof=None, verbose=False):
    r"""
    Returns a list of rational `j` such that all elliptic curves
    defined over `\QQ` with good reduction outside `S` have
    `j`-invariant in the list, sorted by height.

    INPUT:

    - ``S`` -- list of primes (default: empty list).

    - ``proof`` -- ``True``/``False`` (default ``True``): the MW basis for
      auxiliary curves will be computed with this proof flag.

    - ``verbose`` -- ``True``/``False`` (default ``False````): if ``True``, some
      details of the computation will be output.

    .. note::

        Proof flag: The algorithm used requires determining all
        S-integral points on several auxiliary curves, which in turn
        requires the computation of their generators.  This is not
        always possible (even in theory) using current knowledge.

        The value of this flag is passed to the function which
        computes generators of various auxiliary elliptic curves, in
        order to find their S-integral points.  Set to ``False`` if the
        default (``True``) causes warning messages, but note that you can
        then not rely on the set of invariants returned being
        complete.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j
        sage: egros_get_j([])
        [1728]
        sage: egros_get_j([2])  # long time (3s on sage.math, 2013)
        [128, 432, -864, 1728, 3375/2, -3456, 6912, 8000, 10976, -35937/4, 287496, -784446336, -189613868625/128]
        sage: egros_get_j([3])  # long time (3s on sage.math, 2013)
        [0, -576, 1536, 1728, -5184, -13824, 21952/9, -41472, 140608/3, -12288000]
        sage: jlist=egros_get_j([2,3]); len(jlist) # long time (30s)
        83

    """
    if not all([p.is_prime() for p in S]):
        raise ValueError("Elements of S must be prime.")

        if proof is None:
            from sage.structure.proof.proof import get_flag
            proof = get_flag(proof, "elliptic_curve")
        else:
            proof = bool(proof)

    if verbose:
        import sys  # so we can flush stdout for debugging

    SS = [-1] + S

    jlist=[]
    wcount=0
    nw = 6**len(S) * 2

    if verbose:
        print "Finding possible j invariants for S = ",S
        print "Using ", nw, " twists of base curve"
        sys.stdout.flush()

    for ei in xmrange([6]*len(S) + [2]):
        w = prod([p**e for p,e in zip(reversed(SS),ei)],QQ(1))
        wcount+=1
        if verbose:
            print "Curve #",wcount, "/",nw,":";
            print "w = ",w,"=",w.factor()
            sys.stdout.flush()
        a6 = -1728*w
        d2 = 0
        d3 = 0
        u0 = (2**d2)*(3**d3)
        E = EllipticCurve([0,0,0,0,a6])
        # This curve may not be minimal at 2 or 3, but the
        # S-integral_points function requires minimality at primes in
        # S, so we find a new model which is p-minimal at both 2 and 3
        # if they are in S.  Note that the isomorphism between models
        # will preserve S-integrality of points.
        E2 = E.local_minimal_model(2) if 2 in S else E
        E23 = E2.local_minimal_model(3) if 3 in S else E2
        urst = E23.isomorphism_to(E)

        try:
            pts = E23.S_integral_points(S,proof=proof)
        except RuntimeError:
            pts=[]
            print "Failed to find S-integral points on ",E23.ainvs()
            if proof:
                if verbose:
                    print "--trying again with proof=False"
                    sys.stdout.flush()
                pts = E23.S_integral_points(S,proof=False)
                if verbose:
                    print "--done"
        if verbose:
            print len(pts), " S-integral points: ",pts
            sys.stdout.flush()
        for P in pts:
            P = urst(P)
            x = P[0]
            y = P[1]
            j = x**3 /w
            assert j-1728 == y**2 /w
            if is_possible_j(j,S):
                if not j in jlist:
                    if verbose:
                        print "Adding possible j = ",j
                        sys.stdout.flush()
                    jlist += [j]
            else:
                if True: #verbose:
                    print "Discarding illegal j = ",j
                    sys.stdout.flush()
    return sorted(jlist, key=lambda j: j.height())
Пример #2
0
def egros_get_j(S=[], proof=None, verbose=False):
    r"""
    Returns a list of rational `j` such that all elliptic curves
    defined over `Q` with good reduction outside `S` have
    `j`-invariant in the list, sorted by height.

    INPUT:

        -  ``S`` - list of primes (default: empty list).

        - ``proof`` - True/False (default True): the MW basis for
          auxiliary curves will be computed with this proof flag.

        - ``verbose`` - True/False (default False): if True, some
          details of the computation will be output.

    .. note::

        Proof flag: The algorithm used requires determining all
        S-integral points on several auxiliary curves, which in turn
        requires the computation of their generators.  This is not
        always possible (even in theory) using current knowledge.

        The value of this flag is passed to the function which
        computes generators of various auxiliary elliptic curves, in
        order to find their S-integral points.  Set to False if the
        default (True) causes warning messages, but note that you can
        then not rely on the set of invariants returned being
        complete.

    EXAMPLES::

        sage: from sage.schemes.elliptic_curves.ell_egros import egros_get_j
        sage: egros_get_j([])
        [1728]
        sage: egros_get_j([2])
        [128, 432, -864, 1728, 3375/2, -3456, 6912, 8000, 10976, -35937/4, 287496, -784446336, -189613868625/128]
        sage: egros_get_j([3])
        [0, -576, 1536, 1728, -5184, -13824, 21952/9, -41472, 140608/3, -12288000]
        sage: jlist=egros_get_j([2,3]); len(jlist) # long time (30s)
        83

    """
    if not all([p.is_prime() for p in S]):
        raise ValueError, "Elements of S must be prime."

        if proof is None:
            from sage.structure.proof.proof import get_flag
            proof = get_flag(proof, "elliptic_curve")
        else:
            proof = bool(proof)

    if verbose:
        import sys  # so we can flush stdout for debugging

    SS = [-1] + S

    jlist = []
    wcount = 0
    nw = 6**len(S) * 2

    if verbose:
        print "Finding possible j invariants for S = ", S
        print "Using ", nw, " twists of base curve"
        sys.stdout.flush()

    for ei in xmrange([6] * len(S) + [2]):
        w = prod([p**e for p, e in zip(reversed(SS), ei)], QQ(1))
        wcount += 1
        if verbose:
            print "Curve #", wcount, "/", nw, ":"
            print "w = ", w, "=", w.factor()
            sys.stdout.flush()
        a6 = -1728 * w
        d2 = 0
        d3 = 0
        u0 = (2**d2) * (3**d3)
        E = EllipticCurve([0, 0, 0, 0, a6])
        # This curve may not be minimal at 2 or 3, but the
        # S-integral_points function requires minimality at primes in
        # S, so we find a new model which is p-minimal at both 2 and 3
        # if they are in S.  Note that the isomorphism between models
        # will preserve S-integrality of points.
        E2 = E.local_minimal_model(2) if 2 in S else E
        E23 = E2.local_minimal_model(3) if 3 in S else E2
        urst = E23.isomorphism_to(E)

        try:
            pts = E23.S_integral_points(S, proof=proof)
        except RuntimeError:
            pts = []
            print "Failed to find S-integral points on ", E23.ainvs()
            if proof:
                if verbose:
                    print "--trying again with proof=False"
                    sys.stdout.flush()
                pts = E23.S_integral_points(S, proof=False)
                if verbose:
                    print "--done"
        if verbose:
            print len(pts), " S-integral points: ", pts
            sys.stdout.flush()
        for P in pts:
            P = urst(P)
            x = P[0]
            y = P[1]
            j = x**3 / w
            assert j - 1728 == y**2 / w
            if is_possible_j(j, S):
                if not j in jlist:
                    if verbose:
                        print "Adding possible j = ", j
                        sys.stdout.flush()
                    jlist += [j]
            else:
                if True:  #verbose:
                    print "Discarding illegal j = ", j
                    sys.stdout.flush()
    height_cmp = lambda j1, j2: cmp(j1.height(), j2.height())
    jlist.sort(cmp=height_cmp)
    return jlist